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Abstract
Fast methods for convolution and correlation underlie a variety of applications in computer vision and graphics, including
efficient filtering, analysis, and simulation. However, standard convolution and correlation are inherently limited to fixed filters:
spatial adaptation is impossible without sacrificing efficient computation. In early work, Freeman and Adelson [FA91] have
shown how steerable filters can address this limitation, providing a way for rotating the filter as it is passed over the signal.
In this work, we provide a general, representation-theoretic, framework that allows for spatially varying linear transformations
to be applied to the filter. This framework allows for efficient implementation of extended convolution and correlation for
transformation groups such as rotation (in 2D and 3D) and scale, and provides a new interpretation for previous methods
including steerable filters and the generalized Hough transform. We present applications to pattern matching, image feature
description, vector field visualization, and adaptive image filtering.

1. Introduction

One of the most widely used results in signal processing is the
convolution theorem, which states that convolution in the spatial
domain is equivalent to multiplication in the frequency domain.
Combined with the availability of Fast Fourier Transform algo-
rithms [CT65, FJ05], it reduces the complexity of what would be
a quadratic-time operation to a nearly linear-time computation (lin-
earithmic). This, together with the closely-related correlation theo-
rem, have enabled efficient algorithms for applications in many do-
mains, including audio analysis and synthesis [All77,Moo77], pat-
tern recognition and compression of images [KJM05,Wal91], sym-
metry detection in 2D images [KS06] and 3D models [KFR04], re-
construction of 3D surfaces [SBS06], inversion of the Radon trans-
form for medical imaging [KS01, Nat01], and solving partial dif-
ferential [Ior01] and fluid dynamic equations [KM90, Sta01].

Despite the pervasiveness of convolution in signal processing,
it has an inherent limitation: when convolving a signal with a fil-
ter, the filter remains fixed throughout the convolution, and cannot
adapt to spatial information.

Early Work on Spatially-Varying Filters A simple approach to
allowing spatial variation is to limit the number of different filters
that are allowed. For example, if differently-rotated versions of a
filter are required, it is possible to quantize the rotation angle, com-
pute a (relatively) small number of standard convolutions, and se-
lect the closest-matching rotation at each pixel.

Motivated by the early research of Knutsson et al. on non-
stationary anisotropic filtering [KWG83], Freeman and Adel-
son [FA91] investigated the idea of steerable filters. The essential
observation is that, for angularly band-limited filters, the results of
spatially adaptive filtering with arbitrary per-pixel rotation can be
computed from per-pixel linear combinations of a finite set of con-

volutions with rotated filters. Given appropriate conditions on the
filter, different transformation groups can be accommodated in this
framework [FA91, SF96, THO99].

Contribution In this work, we provide a representation-theoretic
interpretation of steerable filters, and explore generalizations en-
abled by this interpretation. Our key idea is to focus not on the prop-
erties of filters that allow “steerability,” but rather on the structure
of the group from which transformations are drawn. Specifically,
we show how the ability to perform efficient function steering is
related to the decomposition of the space of filters into irreducible
representations of the transformation group. The analysis permits
us to answer key questions such as:

• How many convolutions are required for spatially-adaptive fil-
tering, given a particular transformation group and a particular
filter?
• Given a fixed budget of convolutions, what is the best way to

approximate the spatially-adaptive filtering?

We are able to answer these questions not only for 2D rotation,
but for a variety of transformations including scaling and non-
commutative groups such as 3D rotation. Moreover, we show that it
is possible to obtain significantly better approximation results than
previous methods that attempt to discretize the space of transfor-
mations.

One of our main generalizations is to apply our results to both
the convolution and correlation operations, for which the effect of
a spatially varying filter has different natural interpretations. Ex-
tended convolution is naturally interpreted as a scattering opera-
tion, in which the influence of each point in the signal is distributed
according to the transformed filter. In contrast, extended correlation
has a natural interpretation as a gathering operation, in which each
output pixel is the linear combination of input pixels weighted by
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Figure 1: Applications of extended convolution. Left: Rotation-independent pattern matching was used to locate the pattern in the image at left. The three
correct matches correspond to the three peaks in the match-quality image. Center: A rotation-dependent filter applied to a photograph with added noise
produces an artistic effect. Right: Scale-dependent smoothing is used to remove compression artifacts from an image while preserving edges.

the locally-transformed filter. We show that the two approaches are
appropriate for different applications, in particular demonstrating
that the spatially adaptive voting of the Generalized Hough Trans-
form [Bal81] may be implemented using extended convolution with
a specially-designed filter.

Figure 1 shows several applications of spatially adaptive filter-
ing that are enabled using our extended correlation and convolu-
tion. At left, we show pattern matching that locates all rotated in-
stances of the pattern (top) in the target image (far left). At cen-
ter we demonstrate an image manipulation in which gradient di-
rections are used to place anisotropic brushstrokes across the im-
age. At right, we show the effect of denoising an image with a fil-
ter whose scale is controlled by gradient magnitude, which yields
edge-preserving smoothing similar to anisotropic diffusion and bi-
lateral filtering [PM90, Wei97, TM98, Wei06]. For the first two ap-
plications, we use spatially adaptive scattering to detect the pattern
and to distribute the brushstrokes, respectively. For the third, we use
our generalization of function steering to support spatially adaptive
(data-dependent) scaling of a smoothing filter.

Approach Our approach is to leverage the fact that linear trans-
formations of the filter can be realized as invertible matrices act-
ing on a high-dimensional vector space (the space of functions,
corresponding to filters). Choosing a basis for the space of func-
tions, the transformation associated to a spatial location can be ex-
pressed in matrix form and spatially adaptive filtering can be im-
plemented as a sum of standard convolutions over the matrix en-
tries (Section 3). When the basis is chosen to conform to the irre-
ducible representations of the transformation group, the matrix be-
comes block-diagonal with repeating diagonal blocks (Section 4),
thereby reducing the total number of convolutions that need to be
performed.

The generality of the method makes it capable of supporting a
number of image processing and image analysis operations. In this
paper, we highlight its versatility by describing several of these ap-
plications, including the use of the extended convolution in two dif-
ferent types of pattern matching applications (Sections 5, 7, and 6)
and three different types of image filtering applications (Section 8).
Additionally, we provide a discussion of how filter steering can be
generalized to three dimensions, where the group of rotations is no
longer commutative (Section 9).

2. Defining Adaptive Filtering

We begin by formalizing our definitions of spatially adaptive fil-
tering. Following the nomenclature of stationary signal processing,
we consider both the correlation and convolution of a signal with
a filter. Though these operators are identical in the stationary case,
up to reflection of the filter through the origin, they define different
notions of spatially adaptive filtering.

For both we assume that we are given a spatial function H, a
filter F , and a transformation field T that defines how the filter is to
be transformed at each point in the domain.

2.1. Correlation

The correlation of H with F is defined at a point p as:(
H ?F

)
(p) =

∫
H(q)F(q− p)dq.

Using the notation ρp to denote the operator that translates func-
tions by the vector p: (

ρpF
)
(q)≡ F(q− p),

we obtain an expression for the correlation as:(
H ?F

)
(p) =

∫
H(q)

(
ρpF

)
(q)dq.

That is, the correlation of H with F can be thought of as a gath-
ering operation in which the value at a point p is defined by first
translating F to the point p and then accumulating the values of the
conjugate of F , weighted by the values of H.

We generalize this to spatially adaptive filtering, defining the
value of the extended correlation at a point p as the value obtained
by first applying the transformation T(p) to the filter, translating
the transformed filter to p, and then accumulating the conjugated
values of the transformed F , weighted by H:

{H, T}?F =
∫

H(q)ρp
(
T(p)F

)
(q)dq. (1)

Note that, if the transformations T are linear, extended correlation
maintains standard correlation’s properties of being linear in the
signal and conjugate-linear in the filter.
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2.2. Convolution

Similarly, convolution can be expressed as:(
H ∗F

)
(p) =

∫
H(q)

(
ρqF

)
(p)dq.

In this case, the convolution of H with F can be thought of as a
scattering operation, defined by iterating over all points q in the
domain, translating F to each point q, and distributing the values of
F weighted by the value of H(q).

Again, we generalize this to spatially adaptive filtering, defining
the extended convolution by iterating over all points q in the do-
main, applying the transformation T(q) to the filter F , translating
the transformed filter to q, and then distributing the values of the
transformed F , weighted by H(q):

{H,T}∗F =
∫

H(q)ρq
(
T(q)F

)
(p)dq. (2)

Note that, as with standard convolution, the extended convolution
is linear in both the signal and the filter (if the transformations T
are linear).

2.3. A Theoretical Distinction

While similar in the case of stationary filters, these operators give
rise to different types of image processing techniques in the con-
text of spatially adaptive filtering. This distinction becomes evident
if we consider the response of filtering a signal that is the delta
function centered at the origin.

In the case of extended convolution, the response is the func-
tion T(0)F , corresponding to the transformation of the filter by the
transformation defined at the origin. In the case of the extended
correlation, the response is more complicated: the value at point p
comes from the conjugate of the filter at the point(s)

(
T(p)

)−1
(p).

Since the transformation field is changing, this implies that some
of the values of the filter can be represented by multiple positions
in the response, while others might not be represented at all.

Beyond thinking of “gathering” and “scattering,” another way of
understanding the distinction between how correlation and convo-
lution extend to varying filters is by considering the dependency
of the transformation on the variables. In extended correlation, the
filter’s transformation depends on the spatial variable of the result.
In contrast, in extended convolution the transformation depends on
the variable of integration. This provides another way of deciding
which of the operations will be appropriate for a given problem.

2.4. A Practical Distinction

The distinction between the two is also evidenced in a more practi-
cal setting, if one compares using steerable filters [FA91] with us-
ing the Generalized Hough Transform [Bal81] for pattern detection
where a local frame can be assigned to each point.

Steerable Filters For steerable filters, pattern detection is per-
formed using extended correlation. The filter corresponds to an
aligned pattern template, and detection is performed by iterating
over the pixels in the image, aligning the filter to the local frame,
and gathering the correlation into the pixel. The pixel with the
largest correlation value is then identified as the pattern center.

Generalized Hough Transform For the Generalized Hough
Transform, pattern detection is performed using extended convo-
lution. The filter corresponds to candidate offsets for the pattern
center and detection is performed by iterating over the pixels in the
image, aligning the filter to the local frame, and distributing votes
into the candidate centers, weighted by the confidence that the cur-
rent pixel lies on the pattern. The pixel receiving the largest number
of votes is then identified as the pattern center.

3. A First Pass at Adaptive Filtering

In this section, we show that for linear transformations, extended
correlations and convolutions can be performed by summing the re-
sults of several standard convolutions. If we do not restrict the space
of possible transformations, little simplification is possible (either
mathematically or in algorithm design) to the brute-force computa-
tion implied by Equations 1 and 2. Therefore, we restrict our filter
functions to lie within an n-dimensional space F , spanned by (pos-
sibly complex-valued) basis functions 〈F1, . . . ,Fn〉. Moreover, we
restrict the transformations T(p) : F → F to act linearly on func-
tions, meaning that they can be represented with matrices (possibly
with complex entries). This permits significant simplification.

We expand the filter as F = [F1 . . . Fn] [a1 . . . an]
T , and write

each transformation T(p) as a matrix with entries Ti j(p). Thus we
can express the transformation of F by T(p) as the linear combina-
tion:

T(p)F = T(p)

(
n

∑
i=1

aiFi

)
=

n

∑
i, j=1

Ti j(p)a jFi.

This, in turn, gives an expression for extended correlation as:

(
{H, T}?F

)
(p) =

∫
H(q)ρp

(
n

∑
i, j=1

Ti j(p)a jFi

)
(q)dq

=
n

∑
i, j=1

Ti j(p)
∫

H(q)ρp
(
a jFi

)
(q)dq

{H,T}?F =
n

∑
i, j=1

Ti j ·
(
H ?a jFi

)
, (3)

which can be obtained by taking the linear combination of standard
correlations. Similarly, we get an expression for extended convolu-
tion as:

{H, T}∗F =
n

∑
i, j=1

(
Ti j ·H

)
∗a jFi (4)

which can also be obtained by taking the linear combination of
standard convolutions.

Note that both equations can be further simplified to reduce the
total number of standard correlations (resp. convolutions) by lever-
aging the linearity of the correlation (resp. convolution) operator:

{H, T}?F =
n

∑
i=1

[
n

∑
j=1

Ti ja j

]
· (H ?Fi) (5)

{H, T}∗F =
n

∑
i=1

([
n

∑
i=1

Ti ja j

]
·H

)
∗Fi. (6)



4 T. W. Mitchel et al. / Efficient Spatially Adaptive Convolution and Correlation

However, we prefer the notation of Equations 3 and 4 as they keep
the filter separate from the signal, facilitating the discussion in the
next section.

Example n = 1

As a simple example, we consider the case in which we would like
to correlate a signal with an adaptively rotating filter F which is
supported within the unit disk and has values:

F(r,θ) = aeikθ.

In this case, rotating by an angle Θ amounts to multiplying the
filter by e−ikΘ. Thus, the extended correlation at point p can be
computed by multiplying the filter F by e−ikΘ(p), where Θ(p) is
the angle of rotation at p, and then evaluating the correlation with
the transformed filter at p. However, since correlation is conjugate-
linear in the filter, the value of the extended correlation can also
be obtained by first performing a correlation of H with the un-
transformed F , and only then multiplying the result at point p by
eikΘ(p).

Example n = 3

Next, we consider a more complicated example in which the filter F
resides within a three-dimensional space of functions, F = a1F1 +
a2F2 +a3F3, with the basis defined as:

F1(r,θ) = ei2θ, F2(r,θ) = e−i2θ, F3(r,θ) = 1

In this case, rotating by an angle Θ amounts to multiplying the first
component of the filter by e−i2Θ, the second by ei2Θ, and the third
by 1 so the previous approach will not work. However, by linearity,
the extended correlation with F can be expressed as the sum of
the separate extended correlations with aF1, bF2, and cF3. Each of
these can each be obtained by computing the standard correlations
with a1F1, a2F2, and a3F3 and then multiplying the values at point
p by ei2Θ(p), e−i2Θ(p), and 1 respectively. Thus, we can obtain the
extended correlation by performing n = 3 separate correlations and
taking their linear combination.

With respect to the notation in Equation 3, rotating the filter F
by an angle of Θ multiplies the coefficients (a1,a2,a3)

T by:

Ti j(Θ) =

 e−i2Θ 0 0
0 ei2Θ 0
0 0 1

 .

Thus, the extended correlation with F can be computed by comput-
ing the standard correlations with the n2 = 9 functions aiFj, mul-
tiplying the results of these correlations by the functions Ti j(p),
and then taking the sum. However, since the functions Ti j(p) are
uniformly zero whenever i 6= j, the standard correlations with aiFj
become unnecessary for i 6= j, and the extended correlation can be
expressed using only n = 3 standard correlations.

Example n = 3, revisited

Though the previous example shows that the extended correlation
with F can be computed efficiently, we now show that the efficiency
is tied to the way in which we factored the filter. In particular, we

show that if the wrong factorization is chosen, the cost of comput-
ing the extended correlation can increase. Consider the same filter
as above, but now expressed as the linear combination of a different
basis as F(r,θ) = ã1F̃1(r,θ)+ ã2F̃2(r,θ)+ ã3F̃3(r,θ), with:

F̃1(r,θ) = cos2
θ, F̃2(r,θ) = sin2

θ, F̃3(r,θ) = cosθsinθ.

Rotating such a filter by an angle of Θ multiplies the coefficients
(ã1, ã2, ã3)

T by:

T̃i j(Θ) =

 cos2
Θ sin2

Θ −cosΘsinΘ

sin2
Θ cos2

Θ cosΘsinΘ

sin2Θ −sin2Θ cos2Θ

 .

Thus, the extended correlation with F can be computed by com-
puting the standard correlations with the functions ãiF̃j, multiply-
ing the results of these correlations by the functions T̃i j(p) respec-
tively, and then taking the sum. In this case, since the matrix entries
are all non-zero, all n2 = 9 standard correlations are required.

Of course, the above discussion was purely a strawman: using
the grouping of terms in Equations 5 and 6, it is possible to avoid
the need for n2 correlations. However, focusing on the structure of
the T matrix and using the tools of representation theory to find a
basis in which it has a particularly simple structure, we can bring
the computational requirements even below O(n) correlations or
convolutions.

4. Choosing a Basis

As hinted at in the previous section, the efficiency of the imple-
mentation of extended correlation (resp. convolution) is tied to the
choice of basis. In this section we make this explicit by showing
that by choosing the basis of functions appropriately, we obtain
matrices that are sparse (with many zero entries) and have repeated
elements. Each zero and repetition corresponds to a standard corre-
lation (resp. convolution) that does not need to be computed.

We begin by considering the group of planar rotations. We show
that there exists a basis of functions in which the transformation
matrix T becomes sparse, specifically diagonal. We then use results
from representation theory to generalize this, and to establish limits
on how sparse the matrix T can be made. We conclude this section
with a detailed discussion of the relation of our work to earlier work
in steerable functions.

4.1. Rotations

To motivate the result that the choice of basis is significant to the
structure of the matrix T, consider planar rotations and their ef-
fect on 2D functions. In this case, the structure of T is most easily
exposed by considering the filter in polar coordinates. In particu-
lar, rotations preserve radius: (r,θ) is necessarily mapped to (r,θ′).
Thus, in polar coordinates the only nonzero entries in T occur in
blocks around the diagonal, one block for each r. Starting with
an n-pixel image, transformation into polar coordinates will give
a function sampled at N = O(n1/2) radii and K = O(n1/2) angles.
Hence the nonzero entries in T will occupy N blocks of size K×K.

To make T even more sparse, we consider representing the func-
tions at each radius in the frequency domain, rather than the spatial
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domain. That is, within a radius the basis functions are proportional
to eikθ, for a fixed k. Applying a rotation to such a single-frequency
function preserves that frequency; it is, in fact, expressible by mul-
tiplying the function by e−ikΘ, where Θ is the angle of the rotation.
Therefore, in this basis T has been simplified to purely diagonal
(with complex entries).

In moving from an arbitrary basis to polar and polar/Fourier
bases, we have reduced the number of nonzero entries in T from
(N ×K)2 = O(n2) to N ×K2 = O(n1.5) to N ×K = O(n). Cor-
respondingly, the number of standard correlations (resp. convolu-
tions) that need to be computed is also reduced.

There is one more reduction we may obtain by considering re-
peated entries in T. In particular, we observe that all the diagonal
entries corresponding to a particular frequency k, across different
radii, will be the same: e−ikΘ(p). Although the rotation angle Θ(p)
may vary across the image, all of these entries will vary in lock-
step, and the associated diagonal entries Tii will be identical. Thus,
we may perform all such correlations (resp. convolutions) at once
by correlating (resp. convolving) e−ikΘ(q) with the sum of all aiFi,
where Fi has angular frequency k. As a result, the number of dis-
tinct correlations (resp. convolutions) is reduced to K = O(n1/2).

Summarizing, to compute the extended correlation of a 2D signal
H and rotation field T with filter F :

Filter Decomposition We first decompose F as the sum of func-
tions with differing angular frequencies:

F =
K/2

∑
k=−K/2

Fk with Fk(r,θ) = fk(r)eikθ.

This can be done, for example, by first expressing F in polar co-
ordinates, and then running the 1D FFT at each radius to get the
different frequency coefficients. [O(n+n logn)]

Standard Correlation Next, we compute the standard correla-
tions of the signal with the functions Fk(r,θ) = fk(r)e

ikθ:

Gk = H ?Fk for each k ∈ [−K/2,K/2].

This can be done by first evaluating the function fk(r)e
ikθ on a reg-

ular grid and then using the 2D Fast Fourier Transform to perform
the correlation. [O(n3/2 +n3/2 logn)]

Linear Combination Finally, we take the linear combination of
the correlation results:(

{H, T}?F
)
(p) =

K/2

∑
k=−K/2

eikΘ(p) Gk(p),

weighting the contribution of the k-th correlation to the pixel p by
the conjugate of the k-th power of the unit complex number corre-
sponding to the rotation at p. [O(n3/2)]

The extended convolution can be implemented similarly, but in
this case we need to pre-multiply the signal:

Gk(p) = H(p) · e−ikΘ(p) for each k ∈ [−K/2,K/2]

and only then sum the convolutions of Gk with Fk.

4.2. Generalization

In implementing the extended correlation for rotations we have
taken advantage of the fact that the space of filters could be ex-
pressed as the direct-sum of subspaces that (1) are fixed under ro-
tation, and (2) could be grouped into subspaces on which rotations
act in a similar manner.

The decomposition of a space of functions into such subspaces
is a central task of representation theory, which tells us that any
vector-space V , acted upon by a group G, can be decomposed into
a sum of subspaces (e.g. [Ser77]):

V ∼=
⊕

λ

mλV
λ,

where λ is the frequency, indexing the subspace fixed under the ac-
tion of the group, and mλ is the multiplicity of the subspace. While
we are only guaranteed that the subspace V λ is one-dimensional
when the group G is commutative, the subspace V λ is guaranteed
to be as small as possible (i.e. irreducible) so that V λ cannot be
decomposed further into subspaces fixed under the action of G.

Using the decomposition theorem, we know that if F represents
the space of filters and the transformations T(p) belong to a group
G, then we can decompose F into irreducible representations of G:

F =

γ⊕
k=1

(
mk⊕
l=1

Fkl

)
(7)

where k indexes the sub-representation and, for a fixed k, the sub-
representations {Fkl}mk

l=1 are all isomorphic.

Referring back to the discussion of rotation in Section 4.1, the
group acting on the filters is G = SO(2) (the group of rotations
in the plane) and the sub-representations Fkl are just functions of
constant radius and constant angular frequency.

4.2.1. Block-Diagonal Matrix

Using the decomposition in Equation 7, we can choose a basis for
F by choosing a basis for each subspace Fkl . Since for fixed k the
{Fkl}mk

l=1 are all isomorphic, we can denote their dimension by nk
and represent the basis for Fkl by:

Fkl = Span〈Fkl
1 , . . . ,Fkl

nk 〉.

Additionally, since Fkl is a sub-representation, we know that
T(q) maps Fkl back into itself. This implies that we can represent
the restriction of T(q) to Fkl by an nk × nk matrix with (i, j)-th
entry Tkl

i j (q). Thus, given F = ∑akl
i Fkl

i ∈ F , we can express the
transformation of F by T(q) as:

T(q)(F) =
γ

∑
k=1

mk

∑
l=1

nk

∑
i, j=1

Tkl
i j (q)akl

i Fkl
j

corresponding to a block-diagonal representation of T by a matrix
with ∑mk blocks, where the (k, l)-th block is of size nk × nk. As
before, this gives:

{H, T}?F =
γ

∑
k=1

mk

∑
l=1

nk

∑
i, j=1

Tkl
i j ·
(

H ?akl
i Fkl

j

)
.
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Using this decomposition, evaluating the extended correlation
now requires the computation of m1n2

1 + · · ·+mR n2
R standard cor-

relations. Note that, since n = m1n1 + · · ·+mR nR, the number of
linear combinations will be smaller than n2 if the space F contains
more than one irreducible representation.

4.2.2. Multiplicity of Representations

We further improve the efficiency of the extended correlation by
using the multiplicity of the representations. Since the spaces
{Fkl}mk

l=1 correspond to the same representation, we can choose
bases for them such that the matrix entries Tkl

i j (q) have the property

that Tkl
i j (q) = Tkl′

i j (q) ≡ Tk
i j for all 1 ≤ l, l′ ≤ mk. As a result, the

extended correlation simplifies to:

{H, T}?F =
γ

∑
k=1

nk

∑
i, j=1

[
Tk

i j ·

(
H ?

[ mk

∑
l=1

akl
i Fkl

j

])]
.

Thus, we only need to perform one standard correlation for each
set of isomorphic representations, further reducing the number of
standard correlations to n2

1 + · · ·+n2
R.

While the previous discussion has focused on the extended corre-
lation, an analogous argument shows that the same decomposition
of the space of filters results in an implementation of the extended
convolution that requires n2

1 + · · ·+n2
R standard convolutions.

4.3. Band-Limiting

In practice, we approximate the extended correlation (resp. con-
volution) by only summing the contribution from the first K � γ

frequencies, for some constant K. This further reduces the number
of standard correlations (resp. convolutions) to n2

1 + · · ·+ n2
K and

is equivalent to band-limiting the filter prior to the computation of
the extended convolution. For example, when rotating images sam-
pled on a regular grid with n pixels, this can reduce the complexity
of extended correlation to O(K n logn) by band-limiting the filter’s
angular components.

4.4. Relation to Steerable Filters

Using the extended correlation, the method described above can be
used to perform efficient steerable filtering. While the implemen-
tation differs from the one described in [FA91], the complexity is
identical, with both implementations running in O(K N2 logN) time
for N×N images and filters with maximal angular frequency K.

We briefly review Freeman and Adelson’s implementation of
steerable filtering and discuss how it fits into our representation-
theoretic framework. We defer the discussion of the limitations
of the earlier implementation in the context of higher-dimensional
steering to Section 9.

In the traditional implementation of steerable filters, the filter F
is used to define the steering basis. (Note that the original work
of Freeman and Adelson [FA91] also proposes, but does not use,
an interpretation based on alternative basis functions.) Specifically,
when the filter is angularly band-limited with frequency K, the
steerable filtering is performed using the functions F0, . . . ,FK−1,
where the function Fk is the rotation of F by an angle of kπ/K.

Because the span of these functions is closed under rotation and
because it contains the filter F , the functions F0, . . . ,FK−1 can be
used for performing the extended correlation. In particular, one can
compute the matrix Ti j(Θ) describing how the rotation of a basis
function can be expressed as a linear combination of the basis, and
then take the linear combinations of the standard correlations of the
signal with the functions a jFi weighted by the matrix entries Ti j.

While this interpretation of steerable filtering within the context
of our representation-theoretic framework hints at an implemen-
tation requiring K2 standard correlations (since the entries Ti j are
non-zero) this is not actually the case. What makes the classical im-
plementation of steerable filtering efficient is that the filter is one
of the basis vectors, F = F0, so the decomposition of the filter F as
F = a0F0 + · · ·+ aK−1FK−1, has a0 = 1 and ai = 0 for all i 6= 0.
Thus, while all K2 matrix entries Ti j are non-zero, only K of the
functions a jFi are non-zero, so the steerable filtering only requires
that K standard correlations be performed.

5. Application to Pattern Detection

We apply extended convolution to detect instances of a pattern
within an image, even if the pattern occurs at different orientations.
Recall that this approach may be thought of as an instance of the
generalized Hough transform, such that image pixels vote for lo-
cations consistent with the presence of the pattern. Figure 1, left,
shows an example application in which we search for instances of
a pattern in Escher’s Heaven and Hell. In this example, all three
rotated versions of the pattern give a high response.

5.1. Defining the Filter and Transformation Field

Our strategy will be to operate on the gradients of both the pattern
P and the target image I. In particular, we take the signal to be

H =
∥∥∇I

∥∥, (8)

and the transformation field T to be rotation by the angle θ, where

θ∇I = atan2
(

∂I
∂y

,
∂I
∂x

)
(9)

and atan2 is the usual two-argument arctangent function.

To design the filter F , we consider what will happen during the
extended convolution when we place F at some pixel q. The val-
ues of F will be scattered, with weight proportional to the gradient
magnitude at q; in other words, the filter will have its greatest effect
at edges in the target image. Now, if q were the only point with non-
zero gradient magnitude, the optimal filter F would simply be the
distribution that scatters all of its mass to the single point p̃ – the
pattern center relative to the coordinate frame at q. When there are
multiple points with non-zero gradient magnitude, we set F to be
the “consensus filter”, obtained by taking the linear combination of
the different distributions, with weights given by the gradient mag-
nitudes.

In practice, the filter is itself constructed by a voting operation.
For example, consider Figure 2, which shows an example of con-
structing the optimal filter (right) for an ‘A’ pattern (left) with re-
spect to its gradient field (middle) at the point p. For each point q in
the vicinity of the patternâĂŹs center, the gradient determines both
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Figure 2: Visualization of the construction of the optimal filter defined in Equation (10): A crop from an input image is shown on the left.
The gradients, the keypoint p, and neighboring points qi are shown in the middle. The derived filter is shown on the right.

the position of the bin and the weight of the vote with which q con-
tributes to the filter. For example, since the gradient at q1 is inter-
preted as the x-axis of a frame centered at q1, the position of p rela-
tive to this frame will have negative x- and y-coordinates. The gra-
dient at q1 has a large magnitude, so the point q1 contributes a large
vote to bin p̃1. The keypoint p has positive x- and y-coordinates rel-
ative to the frame at q3 but since the gradient is small, it contributes
a lesser vote to bin p̃3.

Iterating over all points in the neighborhood of the patternâĂŹs
center, we obtain the filter shown on the right. While the filter does
not visually resemble the initial pattern, several properties of the
pattern can be identified. For example, since the gradients along the
outer left and right sides of the ‘A’ tend to be outward facing, points
on these edges cast votes into bins with negative x-coordinates, cor-
responding to the two vertical seams on the left side of the filter.
Similarly, the gradients on the inner edges point inwards, produc-
ing the small wing-like structures on the right side of the filter.

Formally, we define the filter as:

F =
∫
‖∇P‖ ρ−T−1(q)·(p−q) δ dq, (10)

where the transformation field T is defined as rotation by the gra-
dient directions of the pattern P, and δ is the unit impulse, or
Dirac delta function. This encapsulates the voting strategy de-
scribed above. In the appendix, we show that the filter F defined
in this manner optimizes the response of the extended convolution
at the origin.

5.2. Discussion: Band-Limiting Revisited

As we have seen, the extended convolution of an N×N image with
a rotating filter can be computed in O(N3 logN) time by computing
O(N) standard convolutions. Though this is faster than the O(N4)
brute force approach, a similar form of pattern matching could be
implemented in O(N3 logN) by generating O(N) rotations of the
filter, performing a convolution of the image with each one, and set-
ting the value of the response to be the maximum of the responses
over all rotations.

The difference becomes apparent when we consider limiting

the number of convolutions. As an example, Figure 3, top, shows
the results of extended convolution-based pattern detection using
low order frequencies. The band-limiting in the angular compo-
nent gives blurred versions of the match-strength image, with the
amount of blur reduced as the number of convolutions is increased.
In contrast, convolving the image with multiple rotations of the pat-
tern, as shown in the middle row, yields sub-sampled approxima-
tions to the response image, and more standard convolutions are
required in order to reliably find all instances of the pattern. We
can actually make a specific statement: the best way (in the least-
squares sense, averaged over all possible rotations) to approximate
the ideal extended convolution with a specific number of standard
convolutions is to use the ones corresponding to the largest ai: the
most important projections onto the rotational-Fourier basis. Since
in practice the lowest frequencies have the highest coefficients, sim-
ply using the lowest few bases is a useful heuristic.

Figure 3: Comparison of approximations to exact pattern detection. Us-
ing subsets of frequencies for extended convolution (top) converges more
quickly than convolution with multiple rotations of the pattern (bottom).

6. Application to Contour Matching

As a second test, we apply extended convolution to the problem
of matching complementary planar curves. To generate the signal
and the rotation field, we rasterize the contour lines and their nor-
mals into a regular grid. We further convolve both the signal and
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Figure 4: An example of applying the extended convolution to contour
matching. The image on the left shows the query contour with the region
of interest selected. The images on the right show the best nine candidate
matches returned by our system, in sorted order.

the vector field with a narrow Gaussian to extend the support of the
functions. Using these, we can define filters for queries and com-
pute extended convolutions.

Our contour matching algorithm differs from standard pattern
matching in two ways. First, we are searching for complemen-
tary shapes, not matching ones. Using the fact that complemen-
tary shapes have similar local signals, but oppositely oriented gra-
dient fields, we define the filter using the negative of the query con-
tour’s gradient field. Additionally, after finding the optimal aligning
translation using extended convolution, we perform an angular cor-
relation to find the rotation minimizing the L2-difference between
query and target.

An example search is shown in Figure 4. The image on the left
shows the query contour, with a black circle indicating the region
of interest. The image on the right shows the top nine candidate
matches returned using the extended convolution, sorted by re-
trieval rank from left to right and top to bottom. Blue dots show
the best matching position as returned by the extended convolu-
tion, and the complete transformation is visualized by showing the
registered position of the query in the coordinate system of the tar-
get. Note that even for pairs of contours that do not match, our
algorithm still finds meaningful candidate alignments.

To evaluate our matching approach, we applied it to the con-
tours of fragmented objects. Reconstructing broken artifacts from
a large collection of fragments is a labor-intensive task in archeol-
ogy and other fields, and the problem has motivated recent research
in pattern recognition and computer graphics [MK03, HFG∗06,
BTFN∗08]. As a basis for our experiments, we used the ceramic-3
test dataset that is widely distributed by Leitão and Stolfi [LS02].
This dataset consists of 112 two-dimensional fragment contours
that were generated by fracturing five ceramic tiles, and then digi-
tizing the pieces on a flatbed scanner and extracting their boundary
outlines.

Running the contour matching algorithm on each pair of frag-
ments produces a sorted list of the top candidate matching con-
figurations for each fragment pair. These candidate matches are
reviewed to verify if they correspond to a true match. By using
the same dataset, we can directly compare our algorithm’s per-

Figure 5: The number of true contour matches within the first n
ranked candidate matches found using extended convolution, as
compared to those found using method of Leitão and Stolfi.

formance against the multiscale dynamic programming sequence
matching algorithm and results described in [LS02]. We used the
same contour sampling resolution as their finest multiresolution
scale: fragments thus ranged from 690 to 4660 samples per con-
tour. The numbers of true matches found within the first n ranked
candidate matches found by the two algorithms are compared in
Figure 5.

The extended convolution matching algorithm outperforms the
multiscale sequence matching algorithm, and finds 72% more cor-
rect matches among the top-ranked 277 candidates. At this level
of matching precision, our algorithm requires 6 hours to process
the entire dataset of 112 fragments on a desktop PC (3.2 GHz Pen-
tium 4). By reducing the sampling rate of the contour line rasteri-
zation grid or increasing the step size along the contours between
extended convolution queries, the running time can be reduced sig-
nificantly while trading off some search precision. For collections
with a large number of fragments, the matching algorithm can eas-
ily be executed in parallel on subsets of the fragment pairs.

7. Application to Image Matching

An image feature descriptor can be constructed from the discretiza-
tion of the optimal filter F , as defined in Equation (10), relative to
the signal and frame field in Equations (8) and (9). We call this
descriptor the Extended Convolution Descriptor (ECD).

We compare the ECD image descriptor against SIFT in the con-
text of feature matching on a challenging, large-scale dataset. We
choose to compare against SIFT for several reasons. Foremost,
SIFT has stood the test of time. Despite its introduction over two
decades ago, SIFT is arguably the premier detection and description
pipeline and remains widely used across a number of fields, includ-
ing robotics, vision, and medical imaging. Competing pipelines
have generally emphasized computational efficiency and have yet
to definitively outperform SIFT in terms of discriminative power
and robustness [KPS17, TS18].

The advent of deep learning in imaging and vision has co-
incided with the introduction of a number of contemporaneous
learned descriptors which have been shown to significantly out-
perform SIFT and other traditional methods in certain applications
[MMRM17,HLS18,LSZ∗18,ZR19]. However, the performance of
learned descriptors is often domain-dependent and “deterministic"
descriptors such as SIFT can provide either comparable or supe-
rior performance in specialized domains that learned descriptors
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are not specifically designed to handle [ZFR19]. More generally,
“classical" methods for image alignment and 3D reconstruction,
e.g. SIFT + RANSAC, may still outperform state-of-the-art learned
approaches with the proper settings [SHSP17, JMM∗20].

The scope of this work is limited to local image descriptors –
we do not consider the related problem of feature detection. The
SIFT pipeline integrates both feature detection and description in
the sense that keypoints are chosen based on the distinctive poten-
tial of the surrounding area. As we seek to compare against the
SIFT descriptor directly, we perform two sets of experiments. In
the first, we replace the SIFT descriptor with ECD within the SIFT
pipeline to compare practical effectiveness. The goal of the sec-
ond experiment is to more directly evaluate our contribution with
respect to the design of rotationally invariant descriptors. Specifi-
cally, we seek an answer to the following question: By having all
points in the local region encode the keypoint relative to their own
frames, do we produce a more robust and discriminating descriptor
than one constructed relative to the keypoint’s frame?

7.1. Comparison Regime

In both sets of experiments, we evaluate ECD and SIFT in the
context of descriptor matching using the publicly available photo-
tourism dataset associated with the 2020 CVPR Image Matching
Workshop [JMM∗20]. The dataset consists of collections of im-
ages of international landmarks captured in a wide range of condi-
tions using different devices. As such, we use the dataset to simul-
taneously evaluate descriptiveness and robustness. The dataset also
includes 3D ground-truth information in the form of the camera
poses and depth maps corresponding to each image. In all of our
experiments, we use the implementation of SIFT in the OpenCV
library [Bra00] with the default parameters.

Due to the large size of the dataset, we restrict our evaluations
to the image pools corresponding to six landmarks: reichstag,
pantheon_exterior, sacre_coeur, taj_mahal,
temple_nara_japan, and westminster_abbey, which
we believe reflect the diversity of the dataset as a whole. Ex-
periments are performed by evaluating the performance of the
descriptors in matching a set of scene images to a smaller set of
models.

For each landmark, five model images are chosen and removed
from the pool. These images are picked such that their subjects
overlap but differ significantly in terms of viewpoint and image
quality. The scenes are those images in the remainder of the pool
that best match the models.

Specifically, SIFT keypoints are computed for all model in each
pool. Keypoints without a valid depth measure are discarded. For
each landmark, images in the pool are assigned a score based on the
number of keypoints that are determined to correspond to at least
one keypoint from the five models originally drawn from the pool.

Keypoints are considered to be in correspondence if the distance
between their associated 3D points is less than a threshold value
τ. For each of the five models, all pixels with valid depth are pro-
jected into 3D using the ground-truth depth maps and camera poses.
These points are used to compute a rough triangulation correspond-
ing to the surface of the landmark. As in [GBS∗16], we define the

(a) Keypoints and scale determined by the SIFT feature detector

(b) Randomly selected keypoints and scale estimated from ground truth

Figure 6: The mean precision-recall curves for the ECD and SIFT
descriptors. On the left, the keypoints and corresponding scales are
computed in the SIFT pipeline. The three different curves corre-
spond to the average over all scenes using the first 200, 500, and
1000 keypoints in each. On the right, keypoints are selected at ran-
dom and scale is estimated from the ground truth. The curves are
averaged over all scenes using 1000 keypoints in each.

threshold value relative to the area of the mesh, A,

τ = 0.005 ·
√

A / π . (11)

The top 15 images with the highest score from each pool are chosen
as the scenes. The scaling factor in the value of τ was determined
empirically; it provides a good balance between keypoint distinc-
tiveness and ensuring each scene contributes approximately 1000
keypoints to the total.

Comparisons within the SIFT Pipeline

In our first experiment, we perform comparisons with keypoints se-
lected using the SIFT keypoint detector to gauge ECD’s practical
effectiveness. For each model, we compute SIFT keypoints and sort
them in descending order by “contrast” [Low04]. Of these, we re-
tain the first 1000 distinct keypoints having a valid depth measure,
preventing models with relatively large numbers of SIFT keypoints
from having an outsize influence in our comparisons.
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For each scene, we compute SIFT keypoints and discard those
without valid depth. Those that remain are sorted by contrast and
only the first 1000 distinct keypoints that match at least one key-
point from the five corresponding models are retained.

Next, ECD and SIFT descriptors are computed at each keypoint
for both the models and the scenes. Both descriptors are computed
at the location in the Gaussian pyramid assigned to the keypoint in
the SIFT pipeline. The support radius, ε, of the SIFT descriptor is
determined by the scale associated with the keypoint in addition to
the number of bins used in the histogram. The ECD descriptor uses
more bins and we find that it generally exhibits better performance
using a support radius 2.5 times larger that of the corresponding
SIFT descriptor.

Comparisons using Randomized Keypoints

Our second set of experiments are performed in the same manner
using the same collection of models and scenes. The only differ-
ence is that the keypoints are selected at random so as to avoid
the influence of the SIFT feature detection algorithm on the re-
sults. Specifically, for each model, 1000 keypoints are randomly
chosen out of the collection of points that have a valid depth mea-
sure. Then, for each scene, we randomly select keypoints with valid
depth and keep only those that correspond to at least one keypoint
from the five associated images in the models. This process is iter-
ated until 1000 such points are obtained.

We use the ground-truth 3D information to provide an idealized
estimation of the scale. That is, for a keypoint, the associated 3D
point is first translated by 2τ in a direction perpendicular to the
camera’s view direction and then projected into the image plane.
For both descriptors, the distance between the 2D keypoint and the
projected offset defines the support radius.

Evaluating Matching Performance

In both sets of experiments, we evaluate the matching perfor-
mance of the SIFT and ECD descriptors by computing precision-
recall curves for all keypoints in the scenes, an approach that has
been demonstrated to be well-suited to this task [KS04, MS05].
Given a scene keypoint, s and corresponding descriptor D(s), all
model keypoints are sorted based on the descriptor distance, giving
{m1, . . . ,mM} with

‖D(s)−D(mi)‖ ≤ ‖D(s)−D(mi+1)‖ .

Some keypoints may be assigned multiple descriptors in the SIFT
pipeline depending on the number of peaks in the local orientation
histogram. In such cases we use the minimal distance over all of
the keypoint’s descriptors.

Scene and model keypoints are considered to match if they cor-
respond to the same landmark and the distance between their 3D
positions is less than the threshold τ defined in Equation (11). We
define Ns to be the set of all model keypoints that are valid matches
with s. Following [SMKF04], the precision Ps and recall Rs as-
signed to s are defined as functions of the top r model keypoints,

Ps(r) =

∣∣∣Ns∩{mi}i≤r

∣∣∣
r

and Rs(r) =

∣∣∣Ns∩{mi}i≤r

∣∣∣
|Ns|

. (12)

Figure 7: Relative performance of SIFT and ECD in matching ran-
domly selected keypoints in two pairs of scene (top) and model
(bottom) images: Pairs of corresponding scene and model key-
points are grouped together and are visualized as vertical lines be-
tween the two images. Lines are colored to show the difference in
the percentage of valid matches found by each descriptor and the
thickness gives the number of corresponding pairs in each group.

7.2. Results and Discussion

We aggregate the results by computing the mean precision and re-
call across all keypoints in the scenes. For the first set of experi-
ments, we compute three curves for each descriptor corresponding
to the top 200, 500, and 1000 keypoints in each scene as ranked by
contrast. The resulting precision-recall curves are shown in Figure
6a. For the second set, we compute a single mean curve for each
descriptor using all 1000 keypoints in each scene; these are shown
in Figure 6b.

Overall we see that ECD performs better than SIFT in our
evaluations, though the difference is more pronounced when key-
point detection and scale estimation are decoupled from the SIFT
pipeline as in our second set of experiments. In the former case,
the precision of each descriptor decreases as the number of scene
keypoints increases. This is not surprising as each successive key-
point added is of lower quality in terms of potential distinctiveness.
Figure 7 shows a comparison of the valid matches found using the
SIFT and ECD descriptors between two pairs of scene (top) and
model (bottom) images in the randomized keypoint paradigm. We
find that ECD tends to find slightly more valid matches than SIFT
in less challenging scenarios, as in the case on the left where the
scene and model image differ mainly in terms of a small change in
the 3D position of the cameras. However, both descriptors perform
similarly in more challenging scenarios as shown on the right.

We do not argue that the results presented here show that the
ECD descriptor is superior. Rather, they demonstrate that the ECD
descriptor is distinctive, repeatable, and robust in its own right and
has the potential to be an effective tool in challenging image match-
ing scenarios. However, it is important to note that effective imple-
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mentations of the ECD descriptor may come at an increased cost. In
our experiments, we find that ECD performs best with a descriptor
radius of 7, which translates to a descriptor size of 225 elements,
roughly two times the 128 elements in the standard implementation
of SIFT.

The run-time of our proof-of-concept implementation of ECD
does not compare favorably to the highly optimized implementa-
tion of SIFT in OpenCV. (SIFT runs up to a factor of ten times
faster.) However, both approaches have the same complexity, re-
quiring similar local voting operations to compute the descriptor,
and we believe that ECD can be optimized in the future to be more
competitive.

8. Application to Image Filtering

We apply extended convolution to the problem of adaptive image
filtering, associating a scale or rotation to every pixel. For exam-
ple, Figure 8 shows adaptive smoothing of a market-stall image
(left) with a Gaussian filter transformed according to a checker-
board scaling mask (center). White and black tiles in the mask cor-
respond to wide and narrow filters, respectively.

Guided by the principles outlined in section 4, we can decom-
pose any filter into functions of the form

Fk(r,θ) = eik log r fk(θ).

Note the similarity to the case of rotation, with the Fourier trans-
form applied to logr instead of to θ. For the radially-symmetric
Gaussian filter, of course, fk(θ) is just a constant and the imple-
mentation becomes even simpler.

The result of the extended convolution is shown at right, ex-
hibiting the desired smoothing effect with points overlapped by
the white regions in the transformation field blurred out and points
overlapped by the dark region retaining sharp details.

A similar technique is used in Figure 1 (right), but with the scal-
ing field obtained from the gradient magnitudes of the original im-
age. As a result, the smoothing filter is scaled down at strong edges,
preserving the detail near the boundaries and smoothing away from
them, effectively acting similar to a bilateral filter [TM98, Wei06].

Figure 8: An example of using the extended convolution for adaptive
smoothing. Given an image (left) and a transformation field (center) the ex-
tended convolution can adaptively smooth the image (right) so that darker
points in the transformation field maintain feature detail while lighter points
are blurred out.

To apply the extended convolution to image smoothing, we need
to modify the output of the extended convolution so that the value
at every point is defined as the weighted average of its neighbors.

Figure 9: Left: If the value of a pixel is not normalized by the weighted
average of its neighbors, the luminance is affected by the filter variance at
each pixel. Right: Normalizing for filter variance, but failing to account
for filter scale change, results in blur-bleeding across sharp edges in the
transformation mask.

Treating the value
(
{H, T} ∗F

)
(p) as the weighted sum of con-

tributions from the neighbors of p, we can do this by dividing the
value at p by the total sum of weights. That is, if we denote by
{1, T}∗F the extended convolution with a signal whose value is 1
everywhere, the adaptively smoothed signal can be defined as:

{H, T}∗F
{1, T}∗F

. (13)

To localize the smoothing, we modify the signal. Specifically,
using the fact that scaling the filter F by T(q) scales its integral by
T2(q), we normalize the signal H, setting:

H̃(q) =
H(q)
‖T(q)‖2

so that the extended convolution {H̃, T} ∗F distributes the value
H(q) to its neighbors, using a unit-integral distribution. Note that
this modification is necessary only when the transformation field T
includes scaling; it is not needed when T consists of rotations.

As an example, Figure 9, left, shows the results of the extended
convolution for the market stall signal and checkerboard transfor-
mation mask, without a division by {1, T}∗F . Because the filters
in the black regions in the mask have smaller variance, the corre-
sponding regions in the image accumulate less contribution and are
darker.

Dividing by {1, T}∗F , we obtain Figure 9, right. The pixels now
have the correct luminance, but because the filters used in the light
portions are not normalized to have unit-integral, the adaptively
smoothed image exhibits blur-bleeding across the mask boundaries.
The correct result, with normalized H̃, is shown in Figure 8, right.

An example of adaptive smoothing with a more complex scaling
mask is shown in Figure 10. The image on the left shows a wire-
frame visualization of a dragon model and the image on the right
shows the results of adaptive smoothing applied to the visualiza-
tion. For the scaling mask, we set:

T(p) = |Z(p)−Z(p0)|

where Z(p) is the value of the z-buffer at pixel p, and p0 are the
pixel coordinates of the center of the dragon’s left eye. For the fil-
ter, we used the indicator function of a disk, smoothed along the
radial directions. Smoothing was necessary to ensure that undesir-
able ringing artifacts did not arise when we approximated the ex-
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tended convolution by using only the first 64 frequencies. This vi-
sualization simulates the depth-defocus (e.g. [PC81,Dem04,ST04,
KLO06]) resulting from imaging the dragon with a wide-aperture
camera whose depth-of-field is set to the depth at the dragon’s left
eye. Although the implementation does not take into account the
depth-order of pixels, and hence does not provide a physically ac-
curate simulation of the effects of depth-defocus, it generates con-
vincing visualizations that can be used to draw the viewer’s eye to
specific regions of interest.

The effectiveness of adaptive blurring is made possible by two
properties: First, despite the band-limiting of the filter, adaptive
blurring accurately reproduces fine detail, such as the single-pixel-
width wire-frame lines in the left eye. Second, because the ex-
tended convolution is implemented as a scattering operation, it ex-
hibits fewer of the edge-bleeding artifacts known to be difficult
(e.g. [KLO06]) in “gathering” implementations.

As a further example of the effects achievable using adaptive
filtering, we demonstrate the use of extended convolution with a
rotational field to implement the Line Integral Convolution (LIC)
technique for vector field visualization [CL93]. We apply the ex-
tended convolution of a long, narrow anisotropic Gaussian kernel
to a random noise image, using the given vector field’s angle at each
pixel to determine the rotation to apply to the kernel. The result is
shown in Figure 11, center, while at right we show the result pro-
duced when the normalization in (13) is not performed. The same
technique was used to produce Figure 1, center: the gradient of the
source image was used to define the rotational field, and noise was
added to the image before applying extended convolution.

9. Function Steering in 3D

One of the contributions of our presentation is that it allows func-
tion steering to be generalized to higher dimensions. In this sec-
tion, we discuss the limitations of using the classical formulation
of function steering to adaptively rotate filters in 3D, and describe

Figure 10: Left: A wire-frame visualization of a dragon model. Right: A
simulation of depth-defocus obtained by using the depth values to set the
scaling mask in performing adaptive smoothing on the wire-frame visual-
ization.

Figure 11: Line integral convolution for vector field visualization,
implemented via extended convolution of a random noise image
with the rotational field at left and a narrow anisotropic Gaussian
filter. At right, we show the effects of not performing the normal-
ization in (13) — while the result is not a correct convolution, it is
nevertheless an effective visualization.

how such filtering can still be supported within our generalized,
representation-theoretic framework.

As summarized in Section 4.4, classical steerable filtering with
a filter F is performed by using the functions F0, . . . ,FK−1 as a
steering basis, where Fj is the rotation of the function F by jπ/K
and K is the maximal angular frequency of the filter.

The efficiency of this implementation is based on three proper-
ties. (1) The space spanned by the Fj is the K-dimensional space
containing the orbit of F , so the functions Fj can be used to steer
the filter. (2) The number of rotations, K, is equal to the dimension
of the space spanned by the orbit, so that the functions Fj are the
smallest set of functions required to steer F . And, (3) the filter is
one of the basis functions, F0 = F , so that only K of the functions
aiFj are non-zero, and hence an implementation of extended corre-
lation only requires K standard correlations.

What limits the extension of this approach to 3D function steer-
ing is that it is impossible to generically choose a set of K rotations
R0, . . . ,RK−1 ∈ SO(3) such that R0 is the identity and the func-
tions R0(F), . . . ,RK(F) are linearly independent. (See Appendix
for more details.)

The inability to generalize classical steerable filtering to 3D has
been observed before, and it has been suggested that an expansion
into spherical harmonics might be used to accomplish this [FA91].
Our generalized approach provides the details, showing how to
compute the extended correlation (resp. convolution) in a manner
analogous to the one used for 2D rotations in Section 4.1. In this
discussion, we will consider the spherical parameterization of the
filter where we are assuming that K =O(n1/3) is the maximal angu-
lar frequency, so that the dimensionality of each spherical function
is O(n2/3), and the radial resolution is N = O(n1/3).

Filter Decomposition We first decompose F as the sum of func-
tions with differing angular frequencies:

F =
K

∑
l=0

l

∑
m=−l

Fm
l with Fm

l (r,θ,φ) = f m
l (r)Y m

l (θ,φ),

where the functions Y m
l are spherical harmonics of frequency l and

index m. This decomposition can be done by first expressing F
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in spherical coordinates and then running the Fast Spherical Har-
monic Transform [Sph98] at each radius to get the coefficients of
the different frequency components. [O(n+n log2 n)]

Standard Correlation Next, we compute the standard correla-
tions of the signal with the functions f m′

l (r)Y m
l (θ,φ):

Gm,m′

l = H ? f m′
l Fm

l ∀ l ∈ [0,K], m,m′ ∈ [−l, l].

This can be done by first evaluating the function f m′
l Fm

l on a regular
grid and then using the 3D Fast Fourier Transform to perform the
correlation. [O(n2 +n2 logn)]

Linear Combination Finally, we take the linear combination of
the correlation results:(

{H, T}?F
)
(p) =

k

∑
l=0

l

∑
m,m′=−l

Dl
m,m′

(
T(p)

)
Gm,m′

l (p),

where Dl
m,m′ : SO(3)→ C are the Wigner-D functions, giving the

coefficient of the (l,m′)-th spherical harmonic within a rotation of
the (l,m)-th spherical harmonic. [O(n2)]

Thus, our method provides a way for steering 3D functions, sam-
pled on a regular grid with n voxels, in time complexity O(n2 logn).
If, as in the 2D case, we assume that the angular frequency of the
filter is much smaller than the resolution of the voxel grid, K� N,
the complexity becomes O(nK3 logn).

10. Conclusion

We have presented a novel method for extending the convolution
and correlation operations, allowing for the efficient implemen-
tation of adaptive filtering. We have presented a general descrip-
tion of the approach, using principles from representation theory to
guide the development of an efficient algorithm, and we discussed
specific applications of the new operations to challenges in pattern
matching and image processing.

In the future, we would like to apply extended convolutions us-
ing transformation fields consisting of both rotations and isotropic
scales. We believe that this type of implementation opens the pos-
sibility for performing local shape-based matching over conformal
parameterizations.
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Defining Optimal Filters

Given an image I and associated frame field T and signal H, we
seek a filter F , supported within a disk of radius of ε, whose ex-
tended convolution with the image is maximized (up to scale) at a
point q0.

Expanding the expression for the evaluation of the extended con-
volution at q0, using the fact that evaluation at a point can be ex-
pressed by integrating against a delta function (δ) at that point, and
switching the order of integration, gives

({H, T}∗F)(q0)

=
∫

H(q) F
(
T−1(q) · (q0−q)

)
dq

=
∫

H(q)
(∫

F(p) δ

(
p−T−1(q) · (q0−q)

)
d p
)

dq

=
∫

F(p)
(∫

H(q) δ

(
p−T−1(q) · (q0−q)

)
dq
)

d p

=
∫

F(p)
(∫

H(q) ρT−1(q)·(q0−q) ( δ(p) ) dq
)

d p.

Thus, the filter F supported within a disk of radius ε that, up to
scale, maximizes the response of the extended convolution at q0, is

F =
∫
‖q0−q‖≤ε

H(q)) ρT−1(q)·(q0−q) (δ) dq

=
∫
‖q‖≤ε

H(q0 +q) ρ−T−1(q0+q)·(q) (δ) dq. (14)

Function Steering in 3D

To implement three-dimensional function steering with functions
whose angular frequency is bounded by K, we would need to
choose N = (K +1)2 rotations R0, . . . ,RN−1 ∈ SO(3) such that R0
is the identity and the rotation of any (band-limited) filter F could
be expressed as the linear combination of the rotations of F :

R(F) =
N−1

∑
j=0

α j(R)R jF

Here, α j : SO(3)→ C is the function giving the coefficients of the
j-th function and ∑

K
j=0(2 j+1) = (K +1)2 is the dimension of the

space of spherical functions whose angular frequency is bounded
by K.

The problem is that such a choice of rotations and hence the
definition of the coefficient functions α j, needs to depend on the
filter F . To see this, we show that for any choice of rotations,
R1, . . . ,RN−1, we can always find a spherical function F whose
orbit under the group of rotations spans an N-dimensional space
but has the property that the functions R0F, . . . ,FN−1F are linearly
dependent, and cannot span the same space.

Consider the rotations R0 and R1, the former is the identity map,
and the latter must be a rotation about some axis, which (without
loss of generality) we assume to be the y-axis. Consequently, any
function that is axially symmetric about the y-axis must be fixed
by both rotations. In particular, this implies that any linear com-
bination of the zonal harmonics has to be fixed. On the one hand,
this implies that functions {R0F, . . . ,RN−1F} span a space whose
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dimension is no larger than N− 1 (since R0F = R1F) on the other
hand, we know that if the coefficients of all the zonal harmonics are
non-zero, the orbit of F under the action of the rotation group must
span an N-dimensional space. Thus, it is impossible to express all
rotations of F using linear combinations of {R0F, . . . ,RN−1F}.

Note that while this precludes the extension of classical steer-
able filtering to the steering of arbitrary functions in 3D, a more
restricted version can still be implemented if the space of filters is
constrained. Such a restriction is described in the work of Freeman
and Adelson, where they discuss the possibility of filtering with
functions that are rotationally symmetric about the y-axis. Since the
only rotations fixing such filters are rotations about the y-axis, this
subspace of functions may be steered if the rotations R1, . . . ,RN−1
do not fix the y-axis.


