
My Text in Your Handwriting
Tom S. F. Haines, Oisin Mac Aodha and Gabriel J. Brostow
University College London

There are many scenarios where we wish to imitate a specific author’s
pen-on-paper handwriting style. Rendering new text in someone’s hand-
writing is difficult because natural handwriting is highly variable, yet fol-
lows both intentional and involuntary structure that makes a person’s style
self-consistent. The variability means that naive example-based texture syn-
thesis can be conspicuously repetitive.

We propose an algorithm that renders a desired input string in an author’s
handwriting. An annotated sample of the author’s handwriting is required;
the system is flexible enough that historical documents can usually be used
with only a little extra effort. Experiments show that our glyph-centric ap-
proach, with learned parameters for spacing, line thickness, and pressure,
produces novel images of handwriting that look hand-made to casual ob-
servers, even when printed on paper.

Categories and Subject Descriptors: I.4.7 [Image Processing and Com-
puter Vision]: Feature Measurement—Texture; I.5.4 [Image Processing
and Computer Vision]: Applications—Text processing

Additional Key Words and Phrases: Texture Synthesis, Handwriting, Gen-
erative Models

ACM Reference Format:
Haines, T. S. F., Mac Aodha, O. and Brostow, G. J. 2015. My Text in Your
Handwriting. ACM Trans. Graph. VV, N, Article XXXX (XXXX 2015), 28
pages.

1. INTRODUCTION

The worldwide adoption of digital messaging has given handwrit-
ten communication a special status as the approach for impor-
tant, personally expressive messages. But what can an author do
if, for example, suffering a stroke changes their handwriting, im-
pacting their style and hurting the legibility of their messages?
Handwriting-like fonts [Knuth 1979] and writing on a tablet [Zit-
nick 2013] represent two families of solution that may help, but
look obviously synthetic. Our proposed algorithm is a new alter-
native that allows the author to render and print new text in their
original pen-on-paper handwriting style.

As a one-time input to our system, an end-user annotates an au-
thor’s historical handwriting sample and follows a simple printer
calibration procedure. The user can then ask our system to turn any

Authors may be contacted at T.Haines@cs.ucl.ac.uk, O.Macaodha@
cs.ucl.ac.uk and G.Brostow@cs.ucl.ac.uk.
Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstract-
ing with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
0730-0301/2015/XXXX - XXXX $15.00 Copyright is held by the
owner/author(s). Publication rights licensed to ACM.

new text they like into handwriting that looks like it was written by
the original author. Figure 1 shows a message synthesized after our
algorithm learned the handwriting style of author Sir Arthur Conan
Doyle.

Realistic handwriting synthesis has many other practical uses.
Gifts ordered from online retailers and flower shops can include
personal messages, but they are rendered in an impersonal font.
Handwriting synthesis completes the personalization as the gift
giver could use their actual handwriting. This could also include
the option of using a celebrity’s handwriting. Text in films and com-
puter games can be generated in an actor’s handwriting, as they are
already being hired for their likeness and voice. In computer games,
the text is often dynamic and can appear in large quantities, making
synthesis the only reasonable approach. A similar argument applies
to the possibility of a “handwritten” mail merge, e.g. for Christmas
cards. Comics can include handwritten lettering; synthesis allows
style to be preserved during localization to a foreign language. Fur-
ther, the ability to render the handwriting of living and historical
authors allows for numerous creative uses, e.g. personalized books.
Sensitive materials, such as credit cards, can be intercepted when
sent through the post. Some banks are using synthesized handwrit-
ing as camouflage, which can be improved. Garner [2005] demon-
strated that including a handwritten note with a survey can increase
the response rate from 33% to 70% – more than double.

Our overarching contribution is the design of a system that ren-
ders new text in a specific person’s pen-on-paper handwriting style.
We perform a paper-based user study and demonstrate an approach
that is convincing to a casual observer. No previous work has done
this. Our approach is also flexible. Handwriting is simply scanned
from paper samples. A tablet may be employed, but only to anno-
tate the scanned samples. Samples may be joined-up (cursive), print
(not cursive), or in-between. Natural handwriting is used, rather
than filling out a grid with isolated letters/short sequences of letters
[Guyon 1996]. This provides the novel ability to model the hand-
writing of historic figures, as demonstrated by Figure 1. The real-
ism of the synthesized writing is measured through user-studies, in
terms of how human-like it looks, its similarity to a specific per-
son’s style, and the apparent authenticity of the written document
when printed on paper using a common printer. We also provide
extensive qualitative results, most of which are in the video and
appendices.

Our generative model is built around glyphs1. From train-
ing examples, the model learns to replicate an author’s charac-
ter choices, inter-character ligatures, pen-line texture/color, and
vertical/horizontal spacing. It bears some resemblance to non-
parametric texture synthesis, but handles the intricacies of hand-
writing. To enable synthesis, our system also includes a semi-
automatic user-interface for tagging handwritten text in a training
image.

1A glyph is a specific instance of a character, e.g. each font provides a dif-
ferent glyph to represent an “a.” With handwriting, every glyph is arguably
unique, though authors have a recognizable style which limits the perceived
variety.

ACM Transactions on Graphics, Vol. VV, No. N, Article XXXX, Publication date: XXXX 2015.

2 • T. S. F. Haines, O. Mac Aodha and G. J. Brostow

Fig. 1. A handwriting example rendered by our system using a model created from Sir Arthur Conan Doyle’s real handwriting [Doyle 1901]. One-time
tagging is semi-automatic. This style is semi-decorative, making it particularly difficult to emulate. Despite its current popularity, Doyle never wrote the
Sherlock catchphrase, “elementary my dear Watson.” A fictitious version of our system is portrayed in the Spike Jonze film “Her” (2013), where the futuristic
protagonist works for a company called “Handwritten Greeting Cards.”

2. RELATED WORK

This work lies at the intersection of applied texture synthesis, font
synthesis, and handwriting analysis. Its relationship with texture
synthesis is discussed first, followed by handwriting research. Re-
cently, Elarian et al. [2014] provided a wide ranging review of
handwriting synthesis methods. See Figure 2 for an overview of
the key handwriting terms used in this paper.

2.1 Texture Synthesis

Handwriting synthesis bears many similarities to standard texture
synthesis [Wei et al. 2009]. In both cases our goal is to render plau-
sible new images from existing examples. Early texture synthesis
approaches were parametric [Lewis 1984; Portilla and Simoncelli
2000]. Once a sample could be “explained” with a mathematical
model, extrapolation was straightforward [Ebert et al. 2002]. Re-
alistic synthesis of a much larger range of textures became possi-
ble with the advent of non-parametric methods that sampled image
patches from the input example [Efros and Leung 1999; Efros and
Freeman 2001]. This was a major shift, but came at the expense of
sacrificing artistic control via parameter adjustment.

Several texture synthesis approaches can be explicitly super-
vised. [Kwatra et al. 2003] simulated perspective by restricting
flowers at the top of the canvas to come from scaled-down versions
of the input. [Sun et al. 2005] takes user-indicated line-continuity
into account when inpainting. [Bonneel et al. 2010] use an artists
semantic sketch to synthesize a coherent landscape image. When
synthesizing other specific content, different amounts of manual
and semi-automatic labeling of the input data enable control over
the rendering of faces [Mohammed et al. 2009], video [Schödl
et al. 2000], motion capture [Brand and Hertzmann 2000; Cooper
et al. 2007] and speech [Schroder 2001]. Our model is also a form
of structured texture synthesis, where the text being rendered is
parameterized by what the user types in, but the style is non-
parametrically sampled from a tagged image of the original pen-on-
paper handwriting sample. From a user’s perspective this is ideal.
The parametric information is user understandable and in their con-
trol, while the data-driven style is easy to obtain but hard to other-
wise create.

2.2 General Handwriting

Handwriting remains a ubiquitous skill, taught as a cornerstone of
education. It is therefore unsurprising that significant effort has
gone into integrating computers to fit with our natural mode of
written communication. The whole field of handwriting recogni-
tion [Plamondon and Srihari 2000] works toward this goal. Input
can either be online, arriving in real time via a digital tablet, or of-
fline, scanned later and without temporal information. We collect

Fig. 2. Glossary of the key parts of handwritten text.

data offline. Handwriting features are analyzed at various scales,
from pixel slices to timing information, if available. With features
extracted, a classifier then recognizes either individual characters
or entire words. While recognition is not our goal, we still need it
to prepare data, where we use a pixel-slice type approach to rec-
ognize individual characters. Writer adaptation [Connell and Jain
2002] involves adjusting the pre-trained model to match a specific
writer and to improve recognition accuracy. [Shilman et al. 2006]
adjusted their model as the user corrected errors in the output. As
with Optical Character Recognition [Antonacopoulos et al. 2007],
the bigger obstacle can often be discovering and isolating the text
in the first place [Huang et al. 2013]. We leave this task to a human
operator.

Synthetic text generation has proven very successful for improv-
ing the results of printed word recognition in the wild [Parizi et al.
2014]. In the context of recognition, handwriting generation has
also been explored for augmenting and enlarging training sets.
Mao & Mohiuddin [1997] explored affine and non-linear trans-
formations, and salt and pepper noise, to train a classifier invari-
ant to all three. Other approaches consider interpolation between
glyphs [Mori et al. 2000; Zheng and Doermann 2005] and defor-
mations driven by cosine curves [Varga and Bunke 2003; 2004].
While classification performance can be improved, many of these
deformations create unrealistic writing. Learning an active shape
model [Dinges et al. 2013] might help, but requires that writing
strokes be matched, which is not always possible. Our goal is not to
improve handwriting recognition systems. Instead, we aim to create
believable handwriting, that is indistinguishable from the original.

Identifying the author of writing for forensic purposes remains
a predominantly manual activity. However, computers were used
to automatically assess the validity of writer-identification [Srihari
et al. 2002; Pervouchine and Leedham 2007]. Signatures remain a
popular biometric, and signature verification is an interesting area
of research [Gupta and Mccabe 1997]. Signature synthesis [Wan
and Lin 2009] exists as its counterpoint, in an effort to break ver-
ification systems so they can be improved. CAPTCHAs [Thomas

ACM Transactions on Graphics, Vol. VV, No. N, Article XXXX, Publication date: XXXX 2015.

My Text in Your Handwriting • 3

et al. 2009] have a similar arms-race for barely-legible handwriting.
Signature are a special case, and not considered by the presented
system.

To improve the appearance of messy tablet-written text, Zit-
nick [2013] beautified online handwriting by clustering short path
segments and deforming them toward their means. We want out-
put that is exactly as messy as the original handwriting. Closer to
our use-case of pen-on-paper input, Mueller et al. [2013] trained a
robot to do calligraphy by example.

2.3 Handwriting Generation

Since [Knuth 1979], significant effort has gone into making fonts
that simulate handwriting. While [Andre and Borghi 1990; De-
vroye and McDougall 1995] explored adding some of the expected
variability in real writing, finding a pre-existing font that matches
your own style is practically impossible [Srihari et al. 2002]. Web-
sites exist, either manual [Williams 2014] or automatic [Reinhardt
2014], which enable the creation of custom handwriting-like fonts
based on the vectorization of individual glyphs. These services pro-
duce results that are obviously artificial, as joined-up writing is not
supported, glyphs lack both variability and texture, and the long
range interactions of real handwriting are not reproduced. Hand-
writing “flow,” the result of adjusting letter spacing and the vertical
offset to create a visually pleasing line of text that doesn’t always
precisely follow the rule of the page, is another property of real
handwriting that is not reproduced by font engines. Methods for au-
tomatically interpolating fonts with identical topology exist [Camp-
bell and Kautz 2014] but suffer from similar limitations. Accurately
replicating an individual’s handwriting with current font engines is
prohibitively difficult, so we instead generate textures directly.

To overcome some of the limitations of the font-like approach,
instead of capturing glyphs individually, Guyon [1996] acquired
common two and three letter sequences with a tablet. However,
their results appear unnatural for joined-up handwriting, as the two
and three letter sequences are joined-up while the rest of the glyphs
are not. However, they are, to the best of our knowledge, the only
other paper to consider rendering pen ink, and use pressure and an-
gle of travel to drive a calligraphy-like model. In our work, instead
of rendering ink-like curves we sample the texture of the original
pen from the paper, with the option to substitute other pens if de-
sired. Lin & Wan [2007] asked joined-up writers to draw the lig-
atures without attaching them to anything. These floating ligatures
are then distorted and clipped for use during synthesis. As they
only made use of one glyph, they added random scale and rota-
tion variations in an effort to hide repetition. Elarian et al. [2011;
2015] attempted to match line width when choosing which glyphs
to place next to one another. We include the same idea in our op-
timization. As they were replicating Arabic writing, they made use
of its hard ligature rules: the existence or not of a ligature is fixed
by the specific letters, and ligatures are always rendered onto the
baseline. Similar to our system, Chowdhury et al. [2009] accept
entire sentences written on paper as input. They thresholded and
converted each letter into a letter-specific spline, whereas we sam-
ple image patches containing glyphs. Their assumptions are limit-
ing, as they assume the characters are evenly spaced and sit on the
baseline exactly. No use was made of the ink texture or the flow
of the text, which are both available from the handwriting samples.
The random selection algorithm we compare against in Figure 14
and Appendix E approximates [Chowdhury et al. 2009], as it uses
their placement for laying out the scanned-in glyphs.

Alternative approaches have considered modeling handwriting
in a biologically plausible way, i.e. as a sequence of muscle move-

Fig. 3. Two lines of text written by the same author – the top using a real
pen, the bottom a graphics tablet. Note that the author in question is an
experienced tablet user.

ments. Models include simple pen-on-a-spring approaches [Hin-
ton and Nair 2005], discrete firing of learned motion primi-
tives [Williams et al. 2007], and attempts to replicate the high-level
structure of the human brain [Gangadhar et al. 2007]. Such methods
do not yet generate realistic output, but strive to validate biological
models. They fail to take the various feedback mechanisms into ac-
count, and often lose the subtle details important to an individuals
style.

Graves [2013] outputs the path of a pen without biological con-
siderations. It is one of the few approaches beside ours to tackle
individual style and to support joined-up input/output. Using a neu-
ral network with memory, it was trained on many different writing
styles, as captured by a tablet. It can then output the pen path for a
user provided phrase. It can be forced to output a specific writing
style, and the results are good, though obviously limited to tablet-
writing.

Wang et al. [2002] fitted splines and matched glyphs together to
learn Gaussian distributions over position. They extracted tail and
head regions from the glyphs, which were entered as complete sen-
tences, and then joined glyphs together using splines. Individual
specific models were learned, but their noise model is unrealistic,
such that outputs appear messier than the author’s true handwrit-
ing. Choi et al. [2004] presented a similar hierarchical Gaussian
graphical model with the same issues. In a follow up to their earlier
work, Wang et al. [2004] used active shape models instead of Gaus-
sian distributions to help resolve the messiness issue. Additionally,
a delta log-normal model [Guerfali and Plamondon 1995], com-
monly found in biologically inspired synthesis, was used to synthe-
size ligatures, and a pseudo-Gibbs sampling approach was used to
select a set of visually cohesive glyphs from the active shape model.
All text has equal spacing though, and is always placed directly on
the rule. Our approach varies the spacing, learning models from
the data, and lets glyphs leave the rule if that is consistent with the
author’s style.

Character based languages, such as Chinese, require different
considerations for 2D character layout. Wang et al. [2008] used
their capture-then-arrange method to arrange individual strokes,
driven by a font-like specification of the strokes required by each
word to make single Chinese characters. Consequently, they can
generate all Chinese characters despite having very few samples.
Given the 2D structure of characters, their spatial relationship
model is particularly advanced, allowing them to capture some
complex relationships. Chang & Shin [2012] simulated multiple
languages. While only considering individual glyphs, they included
a 2D layout model for strokes.

Except for the works that augment handwriting recognition
datasets and Chowdhury et al. [2009], all of the above approaches
use graphics tablets for input. Due to low friction and a lack of
visual feedback, writing on a tablet is not the same as writing on
paper, as handwriting is distorted, as shown in Figure 3. The effect
is particularly strong in terms of pen pressure [van Galen 1991],

ACM Transactions on Graphics, Vol. VV, No. N, Article XXXX, Publication date: XXXX 2015.

4 • T. S. F. Haines, O. Mac Aodha and G. J. Brostow

Fig. 4. System diagram showing our processing pipeline, with representative images for each stage. After samples are collected and analyzed, the rendering
system selects a glyph to represent each character, e.g. “e” as shown here. If there are many choices, it must choose one that fits the surrounding text. The
glyphs are then positioned on the page, and ligatures added if the author uses joined up writing. Two example words are given for these three stages, “quietly”
and “queuing.” Finally, the texture is transfered from the original input to the vector output and, if being printed, color correction is applied.

so current virtual-pen renderers [Lee et al. 2006; Lu et al. 2012]
would require considerable extensions to achieve our pen-on-paper
look. We validate the realism of our rendered handwriting with user
studies, which, to date, have been neglected in the literature. Chang
& Shin [2012] is the single exception, as they used a user study to
calibrate how much they could distort writing before it is no longer
the same style. See Appendix G for examples of results generated
by competing approaches.

3. SYSTEM OVERVIEW

Given a sample of an individual’s handwriting, the goal is to render
realistic looking handwriting in the same style, with user specified
words. At a high level, the system reuses glyphs provided by an au-
thor and analyzed through our interface, manipulating them to ob-
tain believable output; see Figure 4. There are two phases: First the
author’s sample, A, is captured and analyzed. Second, the model
renders each user-provided target text t as a “handwritten” output,
R. Finally, additional post-processing may occur, depending on the
use case.

The input to the system is a sample of an author’s digitized writ-
ing, e.g. a scanned document written using a fountain pen; see Sec-
tion 4. For cooperative authors, the process can be optimized to
obtain sufficient samples with the least manual effort, as detailed
in Subsection 4.1. Before synthesis can occur, the sample must be
analyzed. Tagging is semi-automated, and consists of extracting the
path of the pen, and then segmenting it into labeled ligatures and
individual glyphs. The rule the words are written on is also ex-
tracted, and the original texture alpha matted, so it may be com-
posited with an arbitrary background. See Figure 5 for a summary.
Section 5 explains our new handwriting analysis procedure and the
assistive algorithms that make it easy to add a new author’s style
to the database. Once an author’s writing sample is analyzed, it can
be used to render new text as “handwriting.” This is the core of our
method and is described in Section 6. Optional post-processing is
detailed in Section 7.

4. DATA COLLECTION

For each author, a sample of their handwriting is required to drive
our model. The captured handwriting must be representative of the
author’s style. There are two scenarios:

—In historical cases, the author’s writing samples are fixed to those
which have survived history. If there is no “Q” in the source text,
the later stages of the system will be unable to synthesize a “Q.”
Depending on the target text, this may or may not be a concern.

—The interesting case is when the author is available. We can gen-
erate the source text for the author to write out, optimizing it to

maximize the algorithm’s ability to generate hand written text
from a target corpus. This is the subject of the following subsec-
tion.

In our standard experiments, the total sample is approximately
four A4-sized pages, using every other line so that descenders do
not overlap with the ascenders on the line below. Authors took 10−
30 minutes to write out the source. A sample is then scanned at
600 dpi and automatically analyzed with our human-in-the-loop
interface (Section 5). See supplementary video for more details,
and Appendix I for an example.

4.1 Source Text Optimization

We optimize the source text to be written out by the author so we
can obtain sufficient samples with the least effort. In this collabora-
tive scenario, our aim is to construct a source text that includes the
most commonly used letter combinations, but is short enough to
not burden the author unduly. Obviously, for a short text, the user
wouldn’t use a computer at all. The source text consists of com-
plete sentences to be written by the author on the back of single-
sided ruled paper, in the pen of their choosing. They can see the
ruled lines through the paper, without the lines appearing when it is
digitized. The sentences that comprise the source text are selected
automatically from a larger source corpus of text. We used the top
100 English language books on project Gutenberg [Project Guten-
berg 2014] as the source corpus. Certain volumes were removed
for not being work-safe, containing foreign text, or representing ac-
cents textually. These last two are an issue of flow. It was found that
if the author is reproducing something unfamiliar, they will pause
frequently, which affects their handwriting.

The process proceeds by greedily selecting the best sentence S
from the corpus, iteratively. A target corpus defines the best, in
terms of generating a source text that matches the unary and pair-
wise statistics of the target. For example, a corpus of gift greetings
would be used in the case of the card scenario. If no target text
is specified (our default assumption), we use the same Gutenberg
corpus as our target corpus. Our next-best sentence-selection cost
function, CB(S), contains two terms that take account of, respec-
tively, the unary and pairwise neighbor occurrence of letters in the
target-corpus,

CB(S) =
∑
c∈S

1 + F (c)2

Pr(c)
+ ω

∑
{c1,c2}∈S

1 + F (c1, c2)2

Pr(c1, c2)
. (1)

S is the sentence under consideration to become a source-
sentence; the lowest energy one will be appended to the source text
at each iteration. Pr(c) is the probability of seeing letter c in the

ACM Transactions on Graphics, Vol. VV, No. N, Article XXXX, Publication date: XXXX 2015.

My Text in Your Handwriting • 5

target corpus, and Pr(c1, c2) is the probability of seeing c1 fol-
lowed by c2. F (. . .) provides the number of times the given letter
or letter pair has been selected thus far. ω weights the two terms,
and is set to 1

32
. Ignoring the pairwise term, the cost of each sen-

tence on the first selection is approximately the letter cost of the
sentence in Scrabble [Norvig 2014]2. Successive selection itera-
tions emphasize obtaining glyphs that have not yet been collected,
until a four-page limit is reached. This procedure can be thought of
as selecting a good Scrabble hand, with the additional consideration
of pairwise relationships. For experimental reasons, we used a ran-
domized subset of the source corpus each time, to obtain different
sentences from each author.

5. HANDWRITING ANALYSIS

After obtaining data, there are two parts to our handwriting anal-
ysis. They are i) automatic tagging of those samples (Subsection
5.1), and ii) human assistance for correcting the automatic tags, as
needed (Subsection 5.2). Though they can be the same person, we
distinguish between the role of the author, who wrote the hand-
writing sample being emulated, versus the user, who is interacting
with our system to render new images of handwriting. Similarly,
the source text is the UTF-8 transcript of characters that appear in
the author’s sample, and the target text is that which the user wishes
to render. We refer to all characters, symbols, and digits simply as
letters.

5.1 Automatic tagging

For each sample page of handwriting, the goal is to segment the
ink from the scanned image, and tag pixels with their associated
source text letters. Tablet-based sample acquisition would be sim-
pler, but captures visually unnatural training data without texture.
From our scans of pen-on-paper, the real pen trajectory and timing
will be ambiguous, but the glyph characteristics of ink-appearance,
radius, and density suffice for our synthesis purposes. Errors in the
automatic tagging will show up as errors in the synthesized out-
put. An interactive user-tagging stage follows the automatic one, to
fix any errors, as detailed in Subsection 5.2. We now proceed with
automatic segmentation of the ink, followed by calculating all the
needed ink and glyph characteristics.

5.1.1 Ink Extraction. We assume that most pixels in the im-
age depict either the paper or the ink color. (We use ink through-
out, though it may in fact be graphite (pencil) or another material.)
Mean shift [Fukunaga and Hostetler 1975; Comaniciu and Meer
2002] is used with a Gaussian kernel to identify the two largest
modes in RGB space. Instead of just a binary classification, we
seek to model ink density on a continuous scale, to capture the vari-
ation in pressure as the author writes. A line passing through both
modes is defined, and the color of each pixel projected onto the line.
The half-way point between the paper and ink color modes, which
would otherwise mark a classifier’s decision boundary, is treated as
zero ink, and the ink color mode treated as ink with strength one.
Linear interpolation maps every pixel to an ink level, but ink is de-
posited by different pens according to different density profiles. We
want different pens to be comparable, for ink replacement (Subsec-
tion 7.2), so we distort the density profiles to all be identical.

2Scrabble’s letter costs were derived from the letter frequencies of the front
page of The New York Times ∼ 1938, and subjected to human tweaking
[History of Scrabble 2014] and discretization. Our cost is better tuned by
using a much larger corpus directly.

_K i t
t

y_
}Letter

Assignments

Extracted
Line

Link

Splits

Radius

}

Fig. 5. Visualization of the output of the tagging process. The line is vec-
torized, and has radius calculated at every pixel along it. Not shown is the
ink density, which is also calculated for every pixel as the average within
the circle defined by the radius. The line forms a graph, to which splits are
added to delineate each letter and ligature. If a letter has multiple parts then
a link combines them. Finally, the parts are tagged with the relevant let-
ter/digit/punctuation and underscores used to indicate the starts and ends
of words. Ligatures are left implicit, as any path that connects two tagged
glyphs.

Fig. 6. Segmentation on the left shows the graph cuts result without line
aware smoothing. The right side shows the improvement of smoothing.
Writing implement is a pencil.

Using the same kernel as for mean shift, a kernel density estimate
is applied to the ink levels. The cumulative distribution function of
the estimated density is then used to generate a non-linear map-
ping to a uniform distribution. This fixes the density to 0 for the
half way point and 1 for the color of the ink mode in the original
distribution, with an even distribution between the two extremes,
regardless of pen type. Pixels projecting higher than 1 could po-
tentially extend to arbitrarily high density values, so density values
above 2 are clamped, as are values below 0. (This occurs as a result
of regularization and the user overriding the ink segmentation.) To
efficiently apply this model to the entire image, it is converted into
a thin plate spline [Bookstein 1989], that directly converts RGB
values to the final ink density values.

The ink density map is used to segment the line from the back-
ground, by expressing the problem as a binary Markov random field
(Ising model) and solving with graph cuts; see Appendix A.

5.1.2 Density, Radius & Matting. The segmentation thus far
has no concept of pen-stroke lines. Mapping ink pixels to lines, es-
sentially vectorizing of bitmaps, is comparatively simple for high
quality pens that deposit ink smoothly and uniformly. Unfortu-
nately, the two most popular writing implements are cheap ball-
point pens and pencils. These have rough lines, so as demonstrated
in Figure 6, a line-aware regularization method is used. Other ap-
proaches, such as bilateral smoothing, will break lines that are only
a few pixels wide. See Appendix B for details.

ACM Transactions on Graphics, Vol. VV, No. N, Article XXXX, Publication date: XXXX 2015.

6 • T. S. F. Haines, O. Mac Aodha and G. J. Brostow

The smoothed mask is converted into a line with skeletonization
[Blum 1967]. Islands smaller than a period are deleted (threshold
on pixel count). The thinning of Zhang and Suen [1984] is used,
and the output represented as a graph – junctions exist wherever the
line crosses itself. The graph is a piecewise linear representation of
the path the pen took, sampled at every pixel. No attempt is made
to resolve the ambiguity of which way the pen went at junctions.

Ink-line radius along the line is set to the largest circle that can
be drawn at that location without violating the mask. This tends
to underestimate radius, but this is factored into later processing
steps. Line density is simply set to the average density value in the
inscribed circle. The ink-line paths with radius and density infor-
mation are used later as features to match glyphs and connecting
ligatures, in aid of handwriting synthesis.

Though ink density has been computed, an alpha matte is still
needed so that the output can be composited onto a background
of the user’s choosing. An image with transparency is obtained by
replacing the ink through inpainting, then using the standard alpha-
over compositing equation [Porter and Duff 1984] to setup a linear
equation for each pixel. See Appendix C for details.

5.1.3 Tagging. Finally, three types of tags are assigned auto-
matically: 1) a label, indicating which letter the glyph represents.
The labels also indicate if the character is at the start or end of a
word, 2) a split, indicating the point where a line transitions from
glyph to ligature, and 3) a link, indicating that two separate lines
are part of the same glyph (e.g. the tittle and stem of an “i”).

Compared to normal handwriting recognition, this is an unusual
scenario because the source text is known, and just the transition
points are unknown. An approach broadly similar to [Marti and
Bunke 2002] is used here, but with different features and the output
constrained to match the available transcript. The features are docu-
mented in Subsection 7.3; they are histogram-type features defined
for every pixel on the extracted line of the glyph.

Using manually tagged data (see Section 5.2), a random for-
est [Ho 1995; Breiman 2001] classifier is learned3. 64 trees are
used4, obtaining an out of bag success rate of 85% on 96 classes.
The classes are English upper and lower case letters, with digits,
common punctuation, and ligatures. This accuracy is an overesti-
mate, as the training data is not independent, but the constraint of
knowing the true text means even a weak classifier would be suffi-
cient.

The extracted ink line is a graph containing loops, so conform-
ing a labeling to obey the known sequential transcript requires it
be linearized. Linearization is done identically to [Marti and Bunke
2002], where the rule on which the text is written is split into 1 pixel
wide vertical slices, with all features in each slice combined to cre-
ate a Markov chain. To enforce the known source text, the labels of
the Markov chain are positions in the transcript, the transition costs
are then zero to stay on the same label or move to the next, but in-
finity to move elsewhere. Unary terms are obtained by indexing the
probability of each character, converted to negative log likelihood,
by the position in the transcript associated with that label. The first
entry in the chain is required to be the first label and the last entry
the last label. Note that in addition to the characters of the tran-
script, the labels are augmented with a spacer label between each
character pair to represent a ligature/space. The maximum a poste-
riori (MAP) assignment is found using dynamic programming.

3As the training set grows and more handwriting is analyzed, the random
forest is retrained, so it gets better with time.
4No depth or leaf size limits were imposed, and the number of splits tested
at each node was the square root of the feature count.

Fig. 7. Comparison of automatic only (left column) with human assisted
tagging (right column). Ground truth, a sample of the authors actual writing,
is in the central column.

The three types of tags must now be assigned to the extracted ink
line. Labels are assigned to a point on the line that is closest to the
baseline within the slice at the center of a labeled region. Splits are
then added at all lines that cross the transition between regions, but
only when the line connects the labels of the adjacent regions. This
avoids splitting the tails of glyphs that travel underneath another
character, or chopping up writing with a strong slant. Consequently,
it is quite conservative at introducing splits – a missing split is the
most common problem requiring human assistance. This is a fast
fix however, so it is preferred to bias towards missing splits rather
than splits that are wrong. Finally, any subgraph that is still not
labeled, is linked to its nearest labeled subgraph. This is primarily
to link the tittle of an “i” to its stem; it can fail if an author is
imprecise with their tittle placement, but that is an issue resolved
with human assistance.

5.2 Human Assistance

The automatic segmentation and labeling described saves the user
substantial effort. However, mistakes in the output are immediately
obvious, such as a wrong letter, a badly rendered line, and unusual
ligatures. Figure 7 demonstrates this. For this reason, convincing
handwriting requires a human user to perform the one time task
of interactively correcting mistakes, as the presented algorithmic
approach is not flawless. Additionally, there is a first step in our
user interface that is completely manual. Namely, the user indicates
the rotation and spacing of virtual ruled lines to match the rule of
the handwritten sample. For the user, this means click-dragging on
screen. The ruled lines account for scale differences between dif-
ferent samples of the same author, and specify the coordinate frame
in which rendering will ultimately occur.

Problems with ink segmentation can occur, particularly for au-
thors with long flowing tails, as the pen pressure decreases and
trails off along the length of the tail. Also, low quality pens of-
ten have unreliable ink deposition, and gaps can appear that have
to be filled in. Low quality historic documents can have dirt and
damage that needs to be removed. A straightforward painting inter-
face is provided, allowing a human to paint areas that must belong
to the foreground or must belong to the background. They can iter-
atively update this to correct errors in the segmentation, similarly
to other segmentation approaches [Boykov and Jolly 2001; Rother
et al. 2004].

All tags can be edited, in support of the automatic glyph recog-
nition. See Appendix D for a description of this work flow, plus an
analysis of how much time the automatic tagging saves. The sup-
plementary material includes a video of the interface in use.

6. HANDWRITING SYNTHESIS

Given a database of tagged writing samples (Section 5) for a spe-
cific author, the system can render an arbitrary quantity of target
text in their handwriting. To summarize, the database consists of

ACM Transactions on Graphics, Vol. VV, No. N, Article XXXX, Publication date: XXXX 2015.

My Text in Your Handwriting • 7

multiple scanned samples of an author’s handwriting, where the
path of the pen is extracted as a set of lines. These lines include ink
density and radius information as shown in Figure 5. Density and
radius are a function of the variable pressure applied when writing.
Additionally, the line is split into segments which are labeled as
a specific letter, digit, punctuator, or as a ligature. The presented
approach can be broken down, and individual parts switched off;
Appendix F qualitatively demonstrates how performance improves
as each feature is enabled.

6.1 Objective

Given A, an author’s handwriting sample and t, user-provided tar-
get text, the system generates R, the rendered output. This can be
thought of as an optimization that minimizes a cost function,

C(R, t,A) =

GA(g, t) + SA(g, x) + LA(g, x, l) + TA(g, x, l, R).
(2)

The four terms take parameters s, x and l, and are

—Selection of glyphs, GA(g, t): Constrains the rendered output,
R, to select glyphs g ⊂ A, such that the output matches the user-
provided output text, t. This cost has two parts. Firstly, it pe-
nalizes choosing the wrong letter with a cost of infinity, as mis-
spellings are unacceptable. Secondly, it penalizes using glyphs
that are a poor match, e.g. starting a word with a glyph taken
from the middle of a word, as the glyphs at the start of a word
look different to those in the middle [Srihari et al. 2002].

—Spacing of glyphs SA(g, x): Optimizes the positions, x, of the
glyphs on the page, to match the author’s style in terms of both
the vertical and horizontal spacing between adjacent glyphs.
This is to replicate the author’s flow, including keeping each row
of text on the baseline while allowing drifting away from it be-
fore returning, as typical of handwriting (arcs form as the hand
pivots, instead of sliding).

—Ligature use LA(g, x, l): Penalizes rendering ligatures between
glyphs if the author’s writing in A was not joined-up, and sim-
ilarly penalizes generating glyphs that should be joined-up but
aren’t. The set of ligatures to generate is represented by l.

—Texture rendering TA(g, x, l, R): Minimizes the difference be-
tween the output image and the original glyph texture, while en-
suring continuity of the pen path. It avoids unnatural discontinu-
ities caused by changes in pressure, radius, or velocity.

Their purpose is illustrated in Figure 8. After computing the op-
timized texture R, color correction may be applied to match the
look of ink on the final output device. Note that while presented as
a minimization problem, variability is introduced to avoid repeti-
tion. This is necessary as humans are sensitive to the repetition that
would otherwise occur, leaving it obvious that the text is fake.

Optimizing the above cost function directly is problematic, as
the individual terms would have to be overly simplistic, or the com-
plexity would be too high. Instead, each term is optimized greed-
ily in the above order, with proxy terms used to approximate the
remaining terms at each of the four stages. Such an approach al-
lows complex costs to be used for each term, as long as proxy
terms are selected so that efficient optimization methods may be
used. As an example, when optimizing GA(g, t), the texture term
(TA(g, x, l, R)) is approximated as the difference between the aver-
age density/radius of adjacent glyphs. This allows for efficient opti-
mization (as it may be represented by a pairwise term, for dynamic
programming). When actually optimizing TA(g, x, l, R), it is cal-
culated pixel-wise based on color differences, and optimized with

Bad Good

Glyph selection, GA(g, t)

Spacing, SA(g, x)

Ligatures, LA(g, x, l)

Texturing, TA(g, x, l,R)

Fig. 8. Synthesis of the word “and”, demonstrating what each component
of the cost function does. All steps are dependent on the author’s specific
style, e.g. here we show that having ligatures is preferred, but if the author
has print handwriting then the inclusion of ligatures would be wrong. Note
that the last two good exemplars are different, as visible between the “a”
and “n.”

graph cut textures. Because the earlier step selected glyphs using
a proxy for this later term, the pixels will match reasonably well,
and the texture optimization will never have the impossible task
of blending a sudden change in line density/radius. This pipeline is
illustrated in Figure 4. The following subsections explain the proce-
dure, and are organized to match with the four terms in (2). Figure
9 gives a step by step overview of the entire process.

Relation to Fonts At a high level, this cost function can be com-
pared to the processing of a font engine [Knuth 1979; Warnock
et al. 1984; Werner 1999; Correll 2000]. The glyph selection term,
GA(g, t), for a font is typically a one-to-one function, while we
have a one-to-many function, and must optimize the glyph selec-
tion. Some font engines support a random mapping [Andre and
Borghi 1990], while others support human-specified context de-
pendence [Werner 1999]. Spacing, SA(g, x), in a font engine takes
kerning into account, and only adjusts horizontal spacing. For
handwriting, spacing is considerably more variable, and includes a
vertical component as authors drift from the baseline. Font systems,
with a few exceptions [Correll 2000], do not support ligatures, as
required for handwriting and expressed in our system with the lig-
ature term, LA(g, x, l). Finally, a font engine rasterizes the font
as a bitmap, either from splines representing the outline [Warnock
et al. 1984] or mathematical equations representing the path of the
pen [Knuth 1979]. For handwriting, we need to replicate the texture
of the writing implement, TA(g, x, l, R), including subtle density
and radius variations.

6.2 Glyph Selection

The first step is to select glyphs, g ⊂ A, from the author’s sam-
ple to match the desired output text, t. This is the optimization of
GA(g, t) from the cost function (2). It is trivial to find all matching
glyphs in the database and randomly select one for each charac-
ter, but this does not take into account the rest of the cost function.
Instead, all glyphs for each letter are considered as potential can-
didates, with the rest of the cost function represented temporarily
in proxy form by a pairwise cost term. Dynamic programming then
allows us to select an optimized set of glyphs.

We are solving a dynamic programming [Bellman 1952] (DP)
problem of the form

Cdp(g) =
∑
i∈t

U(gi) +
∑

i,i+1∈t

P (gi, gi+1). (3)

It is an instance of DP because the solution for t from neighboring
glyphs g0 to gi+1 characters can be found in constant time, given
the solution for t from g0 to gi characters [Bellman 1952]. U(gi)
represents the unary term and P (gi, gi+1) the pairwise term.

ACM Transactions on Graphics, Vol. VV, No. N, Article XXXX, Publication date: XXXX 2015.

8 • T. S. F. Haines, O. Mac Aodha and G. J. Brostow

(1) Select glyphs using dynamic
programming:
(Subsection 6.2)
---Unary cost encourages sensible glyph

choice.
---Pairwise cost ensures adjacent glyphs

can flow (spacing) and generate a
coherent line (texture).

(2) Draw horizontal spacing from uniform
distributions.
(Subsection 6.3)

(3) Optimize vertical spacing with Kalman
smoothing: (Dynamic programming with
Gaussian distributions)
(Subsection 6.3)
---Unary cost encourages glyphs to stay

on the line.
---Pairwise cost encourages glyphs to

have the vertical offsets seen in the
training data.

(4) Add ligatures if found in author’s
sample.
(Subsection 6.4)

(5) Optional line replacement. Break line
into short segments and replace with
short segments extracted from target line
style.
(Subsection 7.2)

(6) Merge all line segments into a single
texture using graph cut textures.
(Subsection 6.5)

(7) Optional color correction.
(Subsection 7.1)

Fig. 9. Steps of the presented algorithm. Note that both of the pairwise
costs may use random forests to estimate their costs, with the random forest
being used for distance learning in the first use (step 1) and as a regression
forest in the second (step 3).

6.2.1 Unary. The unary term, U(gi), is set to GA(g, t). It is 0
for exact matches, but inexact matches are also considered if there
are fewer than 8 exact matches available. An exact match is when
a glyph is the correct letter with the same case and from the same
placement in a word. The first and last letters of words are writ-
ten differently [Srihari et al. 2002], so glyphs are tagged with their
word placement – start of word, middle of word, or end of word. In
rare cases two types of inexact match are allowed. Using a glyph
with the wrong placement is accepted with a cost of η

2
. Lower case

letters can replace upper case letters, at a cost of η. These costs are
high and such replacements are intended to be rare. Mismatches
mainly occur when working with small handwriting samples, as it
is preferable for the output to remain readable even if there are no
exact matches. There are also cases when an inexact match may be
selected over an exact match due to the other cost terms, e.g. a large
difference in writing pressure.

6.2.2 Pairwise. The pairwise term, P (gi, gi+1), represents the
three remaining cost terms in (2), specifically spacing, ligatures and

texture. For all three a proxy is used: an approximation of the real
term, such that we can efficiently optimize glyph selection while
simultaneously selecting a set of glyphs that will result in a low
overall cost after all parts of (2) are optimized. The true costs are
defined in Sections 6.3-6.5, when they are subsequently optimized.

Spacing and ligatures are, at this stage, considered together. Most
authors either write entirely joined up, or entirely not joined up
(print handwriting) [Srihari et al. 2002]. Some write partially joined
up, but in such cases the tendency is for specific letters to act as
breaks, e.g. never connecting an “a” to the preceding letter with
a ligature. More complex behaviors do exist, often as letter-pair
specific exceptions to the above generalization. Unfortunately they
require excessive data capture to model accurately, due to the com-
binatorial number of samples required. Hence, it is reasonable to
assume that if both source glyphs have ligatures, the output should.
If either glyph is missing a ligature then the output should omit
generating one. The pairwise cost function assigns a cost of zero to
selecting glyphs that were adjacent in the input, so these are likely
to be selected. Short words such as “the” can be copied over whole-
sale. Consequently, unusual ligatures between specific characters
can be used, which helps to maintain an author’s style for partially
joined up and other unusual styles. We now define the pairwise cost
for the two scenarios – when both glyphs have ligatures (joined up)
and when one of them is missing a ligature (partially joined up or
print handwriting).

Two Ligatures Where two adjacent glyphs both have ligatures
towards the other, the spacing is set so their ligatures overlap and
can create a smooth transition when they are interpolated. The cost
is a measure of how smooth a transition can be obtained. Each lig-
ature has a start position, s, and end position, e, as shown in Figure
11 C); subscript i + 1 refers to the second of the two glyphs. The
pairwise cost is then the distance between points that will be coin-
cident after interpolation, for the positioning, p, that minimizes this
distance,

P (gi, gi+1) = Tdp(gi, gi+1)+

η × argmin
p

(|si − (ei+1 + p)|+ |ei − (si+1 + p)|), (4)

where it is trivial to show that p = 0.5(si + ei − si+1 − ei+1) is
a minimum. This is calculated in line space, such that the height
of the rule on which the text is written is 1. η is a scale fac-
tor, appearing throughout, that can be set to any positive constant.
Tdp(gi, gi+1) is the texturing term defined below.

Missing Ligatures In the case that either glyph lacks an ap-
propriate ligature, an alternate cost is required. This cost must be
equivalent to the joined up cost, as otherwise partially joined up
authors would be biased towards either joined up or not joined up,
depending on which cost calculation method was typically lower.
The system hallucinates ligatures where none exist5. This comes
from the idea that while the pen may not be touching the page, it
must travel to the next letter. Humans are fundamentally conser-
vative in their motion [Alexander 1984], so the path of the pen is
likely to be similar regardless of the presence or not of a ligature6.
Additionally, we need a between-word pairwise term, otherwise the
transition from word to word may not appear visually coherent.
The same argument that the pen must travel from one word to an-
other applies, and the missing ligature pairwise term is used again.

5The hallucinated ligatures are only used for cost estimation, and not ren-
dered.
6This principal is unlikely to apply to a child who is still learning to write. It
is expected that in such cases the output will appear too neat for the author.

ACM Transactions on Graphics, Vol. VV, No. N, Article XXXX, Publication date: XXXX 2015.

My Text in Your Handwriting • 9

Specifically, the cost (4) from the last glyph of the first word to
the first glyph of the second word is used. As the distance between
words is larger, the author has more space to adjust the path of the
pen, so the cost is down weighted to half; this was found to improve
the quality of the output.

Given the equivalence requirement, we use distance learning.
This allows us to learn the cost, using the two ligature examples in
the training set, and transfer it to the missing ligature cases. The
distance learning technique of Xiong et al. [2012] is used; it makes
use of regression forests [Breiman 2001; Criminisi and Shotton
2013]. Feature vectors are defined for every pair of adjacent glyphs,
regardless of if they have ligatures or not. A regression forest learns
the costs (4), of the glyph pairs for which costs are available, i.e.
those with ligatures. Ligatures are generated, i.e. transfered [Pan
and Yang 2010], by evaluating the regression forest on the glyph
pairs that are missing ligatures. To obtain sufficient training exem-
plars, particularly for non-joined up authors, samples from many
authors are used for training. This is arguably transferring style be-
tween authors, but it is only choosing glyphs that appear natural
when placed side by side, and acting as a proxy for the real spacing
approach, given in Subsection 6.3.

The distance learning/regression forest requires a feature vec-
tor for each glyph. We use the same feature as earlier, for tag-
ging; see Subsection 7.3 for details. Text requires order depen-
dence, e.g. the ligature of “ab” is typically different from the lig-
ature of “ba.” Xiong et al. [2012] lacks order dependence, so we
modify their feature construction approach to obtain it by splitting
the letters into halves. The feature used is defined for every ver-
tex on the pen line. It is summed for all pixels in each vertical
half of the glyph and each half renormalized to sum to one, con-
sistent with the features being histograms. The notation is given
in Figure 11 A): hn is the feature for the half of the glyph next
to the (potentially hallucinated) ligature, and hf the feature for
the half of the glyph not adjacent to the (potentially hallucinated)
ligature. Whether ligatures exist or not must not affect the feature
vector, so ligatures are excluded from feature calculation. The fea-
ture vector given to the distance learning/regression forest is then
[hni +hni+1, h

f
i +hfi+1, abs(hni −hni+1), abs(hfi −h

f
i+1)]T , where

abs(·) is defined element-wise.
Texture Proxy The texturing term, Tdp(gi, gi+1) from (4), is an

approximation of TA(g, x, l, R) from (2). It represents the need to
select glyphs that will not look anomalous when positioned nearby,
and can have their textures blended to create a coherent line when
there are ligatures. For each glyph, we calculate its average den-
sity and radius for all vertices in the extracted line. The cost is then
the sum of the absolute differences, for both average density and
average line radius, which is then multiplied by η. This is a bias
towards selecting glyphs that have similar pen-on-paper properties.
We have assumed that the large scale properties of the writing im-
plement vary slowly across the page, e.g. authors don’t suddenly
change how much pressure they are applying while writing.

6.2.3 Avoiding Repetition. Repetitions in the text often result
in repetitions in the selected glyphs, which is noticeable to an ob-
server and gives away that the synthesized handwriting is fake7. Us-
ing dynamic programming, with the given unary and pairwise cost
terms, the optimal set of glyphs can be selected, but this will gener-
ate such repetitions. Randomness in the generated output is intro-
duced by interpreting the cost function (3) as a negative log prob-
ability, exp(−Cdp(g)), and drawing from the distribution rather

7While the selected glyphs are dependent on the context of the repeated
text, and hence will vary, certain words such as “the” appear often.

A)

hfi hni hni+1 h
f
i+1

B)

ci
ci+1

δx
δy

C)

si

ei

ei+1

si+1

Fig. 11. A) The near-far labeling scheme for halves of a glyph, as used for
the distance learning feature. B) Two glyphs, “c” and “u”, with their centers
(ci and ci+1) and the horizontal (δx) and vertical (δy) offsets between them
marked. C) Two glyphs, “s” and “t”, with attached ligatures delineated by
the regions within the red marks. The ligature end points are labeled with
the variables used for their coordinates.

than maximizing. There are multiple approaches to performing this
draw; the approach of [Papandreou and Yuille 2011] proves conve-
nient as it involves a trivial modification of the cost function with-
out changing the actual DP implementation. Specifically, Gumbel
noise with scale 1 and location 0 is added to the unary terms before
finding the MAP solution,

U ′(gi) = U(gi) + λu, u ∼ Gumbel(0, 1), (5)

u ∼ Gumbel(0, 1)⇔ u = log(− log(v)), v ∼ uniform(0, 1).
(6)

The pairwise term remains the same. λ is principally 1, but vary-
ing it is equivalent to scaling the entire cost function, Cdp(g), and
adjusting the tightness of the probability distribution function from
which we are drawing. Consequently, the system generates low cost
solutions with a small amount of variability, which is tunable by
scaling λ. With λ = 0 the randomness is switched off; as it is in-
creased, so does variability, until the samples no longer look like
the author’s handwriting. A value of λ = 10η was found to be a
good compromise; examples are shown in Figure 10 A).

6.3 Glyph Layout

With the glyphs selected, their relative position in the output is then
optimized. This is the optimization of the spacing term, SA(g, x),
which is separated into the horizontal and vertical offsets between
adjacent glyphs. The texture term of the cost function is irrelevant
during this optimization step, so no proxy is needed.

Each glyph needs a center, ci, for the offsets to be relative to. See
Figure 11 B). The average position of each glyph’s line vertices is
used, weighted by density and radius squared. For robustness, line
vertices below the line (e.g. long descenders such as on a “y”) and
beyond the bounds of their neighbors (e.g. long crosses on a “t”) are
excluded. Position is then calculated in terms of offsets from this
assigned center. The center needs to be assigned consistently, and
while this approach is reliable for typical glyphs, it can cause prob-
lems for punctuation. As described below, vertical spacing uses a
feature vector, but it is unable to distinguish different punctuation
types, e.g. a comma from an apostrophe. Consequently, it confuses
punctuation and positions them incorrectly, at the average height of
all punctuation. This is resolved by special casing punctuation, by
assigning the same height above the baseline to all punctuation.

Horizontal spacing, δx, is driven by the original position of ad-
jacent glyphs in the author’s handwriting sample. Each glyph in
an adjacent source pair provides an estimate of the offset, by ref-
erence to its assigned center. Output spacing is set to a uniform
draw from the range of offset estimates from adjacent glyphs. For
a pair that were originally neighbors, the range would be zero, so
the range is extended slightly. This introduces randomness, which
helps avoid human detectable patterns. It also gives the flow step

ACM Transactions on Graphics, Vol. VV, No. N, Article XXXX, Publication date: XXXX 2015.

10 • T. S. F. Haines, O. Mac Aodha and G. J. Brostow

Biro HB Pencil Green
Marker Pen

Expensive
Fountain Pen

Mechanical
HB Pencil

Purple
Gel Pen

Cheap
Fountain Pen

Terracotta
Pencil

A)

B)

Fig. 10. A) Same sentence generated multiple times, to demonstrate output variability. The first instance is the maximum likelihood output, which would
otherwise be returned every time. B) Line replacement, where one writing implement is replaced with another. First on the left is the source with the original
texture. While the replacement is visually coherent, the geometric path and density variability of the previous pen is kept, which is sometimes unrealistic.

(see below) the freedom to distort the letter pair back towards the
baseline. Source spacing is not always correct, due to the case when
a letter is used out of position, e.g. the first letter of a word is used
in the middle of a word. In such cases it will use only one estimate,
or if no estimates are available, a draw from a Gaussian distribution
parameterized by the mean and variance of all adjacent glyph esti-
mates in the data set. There are two such estimates, one for the gap
between letters and one for the gap between words. These scenarios
again only occur when limited source text is available.

Vertical spacing, δy , depends on the ligature term, LA(g, x, l).
When both glyphs have ligatures, the vertical spacing is set to min-
imize the distortion required of the ligatures. As ligatures cannot be
matched precisely, a Gaussian distribution is placed over the verti-
cal spacing, such that a draw has a 95% chance of being between
the offsets implied by matching the start/end points of ligatures.
With reference to Figure 11 C), using the vertical ordinate only,

δy(i→ i+ 1) ∼ N
(

(ei+1 − si) + (si+1 − ei)
2

,

|(ei+1 − si)− (si+1 − ei)|
4

) (7)

where δy(i → i + 1) is the vertical offset from glyph i to glyph
i + 1. Note if adjacent glyphs are copied over then δy(i → i +
1) will be drawn from a distribution with a standard deviation of
zero – the glyphs will maintain their original relationship. However,
flow adjustment (described below) is required. For this, a lower
limit is enforced on the standard deviation, so there is always some
flexibility in the vertical glyph placement. This allows distortion to
be hidden throughout the text.

When ligatures are unavailable for either glyph, a regression for-
est, this time trained on the vertical offset, is used. It is setup identi-
cally to the random forest in Subsection 6.2, with the same features
(Subsection 7.3) but trained to infer vertical offset rather than match
cost. The regression forest outputs a standard deviation with its es-
timate, which is used directly for drawing δy(i→ i+ 1). This ap-
proach does result in some stylistic transfer between authors, from
authors with neat handwriting to authors with messy handwriting,
and vice versa.

Flow If the above vertical spacing was applied directly, the text
would not stay on the ruled line. In practice, the author adjusts the
flow of their text to stay on the rule, rather than drifting off due to
the accumulation of small offsets (∼Brownian motion)8. We simu-
late this corrective process with Kalman smoothing [Kalman 1960],
over the length of the horizontal line – see Figure 12. Specifically,
each glyph’s vertical position is the hidden state, which is linked to
the adjacent glyph’s vertical position by the expected vertical offset,

8You may demonstrate this to yourself by attempting to write on a line with
your eyes closed.

y0

y1

y2 y3

δ
y
(0→

1
)

δ
y
(1→

2
)

δ
y
(2→

3
)

y0 y1 y2 y3f f f

g g g g

Fig. 12. Factor graph of Kalman smoothing, used to ensure the synthe-
sized text flows. The yi random variables (circles) indicate how far off the
baseline to position each glyph. Factors (squares) indicate probabilities over
the random variables to which they are connected. Kalman smoothing finds
the most probable assignment of yi values. There are two types of factor. g
factors indicate that the glyphs are probably on the baseline, as a Gaussian
distribution where the mean is the displacement of the glyph in the training
data, hi. This factor is yi ∼ N (hi, 1). f factors indicate the displacement
between adjacent glyphs, δy , as given in (7). When ligatures exist they pro-
vide this term, but when omitted (e.g. print handwriting) it is provided by a
regression forest.

δy(i → i + 1). The unary term indicates that glyphs are probably
on the ruled line. It takes the formN (hi, 1), where hi is the height
from the rule in the author’s sample and the standard deviation is
a parameter we tuned. Note that this is in line space, so one stan-
dard deviation is the entire height of the rule; this is a very weak
requirement to return, but it proves sufficient for a realistic look.
See Appendix H for a large block of synthesized handwriting, in
which this is apparent. This approach is mathematically equivalent
to dynamic programming with Gaussian distributions.

6.4 Ligatures

Ligatures, LA(g, x, l), are added whenever adjacent source glyphs
have ligatures in the author’s sample. This is accurate for fully
joined up and print handwriting, but for the relatively rare partially
joined up handwriting it may put ligatures in the wrong places
or omit them when it shouldn’t. However, when given a limited
amount of data, there is no way to resolve this, and it proves a rea-

ACM Transactions on Graphics, Vol. VV, No. N, Article XXXX, Publication date: XXXX 2015.

My Text in Your Handwriting • 11

sonable approximation. Identically to glyph layout, the texture term
is irrelevant for this step, and no proxy required.

Both original ligatures are generated – the texturing stage is then
responsible for resolving the overlap. They are distorted to pre-
cisely overlap, including adjusting them to have identical radius
at overlapped vertices. The path of the ligature is defined as f(t),
where 0 ≤ t ≤ 1. Start points for the ligatures are fixed, such that
f(0) = si and f(1) = si+1, using the notation of Figure 11 C).
Given that pi(l) is the position and radius of ligature i at location l,
e.g. pi(l) = [x, y, r]T , then f(t) can be defined as

f(t) = (1− w(t))pi(t) + w(t)pi+1(1− t), (8)

where w(t) is an interpolating function, e.g. linear interpolation
would be w(t) = t. We found w(t) = sin(0.5πt) to be a good
choice, as the sine curve preserves the perception of momentum at
the transition from the glyph to the ligature.

For clarity, the system has been described as only considering the
possibility of one ligature connecting adjacent glyphs. In practice
it supports an arbitrary number of ligatures; ligatures are matched
with the closest ligature vertically, conditioned on the match being
reciprocal. We are only aware of one scenario in English where this
is common, specifically a double “t” in a joined up style, where
the cross is typically drawn as a single line across both “t”s. This
scenario is supported by the system, and can be seen in Figure 16.

6.5 Texturing & Graph Cuts

With three of the four optimization objectives fixed, only
TA(g, x, l, R) remains to be optimized. Input to this stage is a
vectorized line; the output a rendered image. The author’s sample
provides examples of the relevant texture. Texture coordinates are
attached to the vectorized line, such that the source pixels can be
queried and copied over. As the input contains multiple overlapping
line segments, particularly in the case of ligatures, an optimization
is required to generate the final texture.

A mapping from the output coordinate system to the source co-
ordinate system is required for each line segment, as the line can be
rotated and scaled when matching ligatures. This is achieved using
UV coordinates attached to the line segments. For every pixel in
the output, the texture is indexed and written out, forming multiple
layers where ligatures overlap. Note that an extra margin of 8 pixels
is added beyond the radius, to be sure of capturing all edge detail;
transparency information is available (see Appendix C).

The mapping of the original texture to the output will gener-
ate multiple estimates for some pixels. Graph cut textures [Kwatra
et al. 2003] is used to choose which pixel color to keep. It optimizes
the pixel color selection such that the color difference between ad-
jacent pixels is similar to the color difference in the source image.
This is minimized by selecting pixels that were originally adjacent.
Consequently, the seams between textures from different sources
are hidden, by locating them where they are visually inconspicu-
ous. The original color difference term of Kwatra et al. [2003] is
extended to include an alpha channel, so transparency levels are
preserved,

M(s, t, A,B) = ||A(s)−B(s)||+ ||A(t)−B(t)||. (9)

M is the cost of transitioning from line segment A to line segment
B between two adjacent pixels, s and t. In the original A(x) and
B(x) return R3, representing the three color channels, red, green
and blue. We extend it to R4 with the addition of alpha. The min-
imum cost cut is then found using the maximum flow algorithm
[Ford and Fulkerson 1956; Boykov and Kolmogorov 2004]. This

is repeated for all overlapping line segments to generate the final
output image, R.

7. POST-PROCESSING

The system described can render realistic “handwriting” on screen.
However, there is the further consideration of color matching the
output printer, to fully sell the illusion. Swapping one pen type for
another in the output phase is additionally explored.

7.1 Color Matching

The output will often need to be rendered to actual paper. Given the
potential use cases, complex calibration methods are best avoided
– the desire is to print on a typical printer with minimal effort. Our
calibration consists of printing the color calibration target given in
Appendix K, and then scanning it in using the same scanner as the
actual text sample, closing the loop. This provides a mapping from
the color sent to the printer to the color that is actually on paper, in
the same color space as the collected author’s sample. Given this
set of matches, {si, pi} ∈ M , where si is a scanned color, and pi
is the color sent to the printer, we need a function that maps from
si to pi. As the set of samples is sparse, an interpolation method is
required to generate a dense 3D look up table (LUT).

Thin plate splines [Bookstein 1989] (TPS) are used; there are
many alternate splines that would be similarly effective, as the
only requirement is to exactly map si to pi at the locations where
matches are available. TPS have the advantage of being parameter-
less however, which is ideal given that non-technical users would
be expected to perform this step. One TPS is required to model each
of the three color channels.

Printer ink is relatively limited in its dynamic range, so the val-
ues output by the TPS may be clamped, as the ink used in many
pens exceeds the printer’s range. However, for ballpoint and pen-
cil, it is a good match. Note that inkjet printers perform much bet-
ter than laser printers for this purpose, as they have both a larger
color space with a more accurate reproduction, plus the ink bleeds
slightly, similarly to a pen.

7.2 Line Ink Replacement

An author will provide a sample of their handwriting using only
one pen, but a user may want output with another. For a deceased
author, samples might have been written with multiple pens, and
attempting to combine them without line replacement would prove
visually inconsistent. Our system allows complete replacement of
the line, with a writing implement of the user’s choice. A sample
of the target ink must be available. Line extraction must have oc-
curred (Section 5) but glyph labeling is unnecessary. Real writing
samples work best, as they include all the shapes and density vari-
ations found in handwriting.

Replacement interrupts the default renderer just before the tex-
turing stage, so graph cut textures will generate a visually com-
pelling result. First, both the text line and replacement ink line
are divided into short overlapping segments, each 16 pixels long
with 50% overlap. Each segment is assigned a line feature vector,
specifically the position delta, radius and density in 4 histogram
bins along the length of the linear segment. Segments from the text
line are then replaced by segments from the ink line that are clos-
est using the line feature (nearest neighbor), with the ink segments
distorted to match the path of the text segments. To avoid visual
repetition, the system avoids using the same ink segment near to
where it was previously used. The line feature vector encourages
matched segments to have comparable density, radius, and shape.

ACM Transactions on Graphics, Vol. VV, No. N, Article XXXX, Publication date: XXXX 2015.

12 • T. S. F. Haines, O. Mac Aodha and G. J. Brostow

H1 H2

H3 H4

H5

Fig. 13. Example line of input to the system for the five styles used in the user studies.

The ink segments keep their texture information so when this al-
ternate line information is passed to the graph cut textures phase,
it is merged to generate a visually consistent output. While this ap-
proach obtains plausible results, it does not affect the output shape,
so converting writing on a high friction surface to writing on a low
friction surface, or vice versa, may not be entirely convincing. Den-
sity profiles of pens are matched (see Subsection 5.1.2), but not all
pens have compatible density profiles, e.g. a fineliner has a very
consistent line, with no density variation, so if converted to pencil
there will be no density variations in the output, which is inconsis-
tent with a real pencil. Figure 10 B) depicts representative results.

7.3 Glyph Feature

A feature vector is required for several parts of the algorithm,
specifically 1) transfer learning the adjacency cost, 2) regressing
on the relative position of glyphs, 3) letter recognition. In all cases
this occurs after line extraction, including estimating the radius and
density of the line, so this information can be utilized. The feature
is defined for every pixel on the extracted line (which is one pixel
wide after thinning).

Similarly to SIFT [Lowe 2004] and HOG [Dalal and Triggs
2005], we construct histograms over properties extracted from the
region surrounding each pixel. Unlike these approaches which ob-
tain their region from the pixel grid directly, we obtain a region
over the extracted line of the text. This minimizes sensitivity to the
pen type, particularly as we use the extracted features, which have
been modified to have the same statistics regardless of writing im-
plement (Subsection 5.1.1).

The feature summarizes the information using a histogram of rel-
ative occurrence for position and density9. Unlike SIFT/HOG, the
feature vector is defined on the line of the text, in terms of ran-
dom walks [Einstein 1956], so the implicit density estimate in the
feature vector is conditioned on distance traveled. Without the ran-
dom walk this would be shape contexts [Belongie and Malik 2000]
augmented with extra features (extra histogram dimensions); the
addition of a random walk encodes information about the path the
pen traveled, which improves performance.

Specifically, for every point on the line, (equivalent to a pixel af-
ter thinning) a random walk over the graph of the text is considered.
After traveling distance δt, the change in density δd is noted, along
with the change in location, δx and δy , relative to the starting loca-
tion. At junctions, the walk chooses an exit at random, discounting
the entry point; it stops at line ends. The change in location is in the
coordinate frame defined so that positive x is the direction of travel
at the start of the walk (forward differencing, after traveling 12 pix-
els for robustness to noise/junctions). This is necessary for rotation
invariance and to nullify the effect of the starting direction of the

9The inclusion of radius was experimented with, but found to confer no
advantage.

walk (particularly at junctions, as otherwise the feature would not
vary smoothly).

Given a prior on travel distance, a density estimate over the end
points of random walks is calculated, P (δt, δd, δx, δy). This is rep-
resented with a histogram, which then constitutes the feature vec-
tor. Eight bins are used for travel distance, three bins for each of
the rest, making a feature vector of length 216 = 8 × 3 × 3 × 3.
Linear interpolation is used when a point falls between the centers
of bins, i.e. it is a histogram with overlapping 4D triangular ker-
nels. Maximum travel distance is set to 512 pixels10. The prior on
travel distance is even odds of falling into each bin, where the bins
are subject to a geometric relationship such that the next bin as you
move away from the start is 1.25 the size of its predecessor. Diffu-
sion is used to calculate the feature vectors exactly, as for an infinite
number of random walks [Einstein 1956]. Note that the parameters
given above are selected to maximize recognition performance.

8. RESULTS

The system encapsulating our algorithm was validated experimen-
tally to measure the realism and style-similarity of its rendering,
and to demonstrate the printer calibration stage. We used our own
dataset for quantitative evaluation, to which we added samples from
historical figures for qualitative results.

8.1 Handwriting Dataset

We collected a dataset containing handwriting samples from dif-
ferent subjects consisting of a variety of writing implements and
handwriting styles. For each subject, the source text contained com-
plete sentences to be written on the blank side of single-sided ruled
paper. Subjects were able to see the ruled lines through the paper,
without the lines appearing in the final scans. The sample length
was typically four pages, obtained as in Section 4. The source text
for each subject was obtained using the algorithm in Subsection 4.1.
Note that each of our subjects received a different random source
text, to avoid repetition in the later user studies.

When evaluating our system, we used a subset of our complete
dataset, denoted as H1–H5, to demonstrate the range of supported
styles. These samples were chosen as they offer variety in both
handwriting style and pen type. H1 is a red fineliner, H2 and H3 are
black ballpoint and blue fountain pen inputs from a second individ-
ual, and H4 and H5 are black ballpoint and red fineliner provided
by a third individual. The samples each contain an average of 1387
glyphs. Examples of the input handwriting are shown in Figure 13.

10At 600dpi, a glyph is typically around 50 pixels wide, so a walk can travel
around 5−10 characters depending on ligatures, suggesting that classifica-
tion utilizes entire words, a result consistent with the handwriting recogni-
tion literature [Plamondon and Srihari 2000].

ACM Transactions on Graphics, Vol. VV, No. N, Article XXXX, Publication date: XXXX 2015.

My Text in Your Handwriting • 13

0 10 20 30 40 50 60 70 80 90 100
Participant Accuracy (%)

0

5

10

15

20

25

30
Pa

rti
ci

pa
nt

s
(%

)
A-1) Participant Scores

our algorithm
random selection

H1 H2 H3 H4 H5
Handwriting Sample

0

20

40

60

80

100

Pa
rti

ci
pa

nt
 A

cc
ur

ac
y

(%
)

A-2) Handwriting Accuracy

our algorithm
random selection

0 10 20 30 40 50 60 70 80 90 100
Average Sentence Accuracy (%)

0

5

10

15

20

25

30

Se
nt

en
ce

s
(%

)

A-3) Sentence Accuracy
our algorithm
random selection

0 10 20 30 40 50 60 70 80 90 100
Participant Accuracy (%)

0

5

10

15

20

25

30

Pa
rti

ci
pa

nt
s

(%
)

B-1) Participant Scores
our algorithm
random selection

H1 H2 H3 H4 H5
Handwriting Sample

0

20

40

60

80

100

Pa
rti

ci
pa

nt
 A

cc
ur

ac
y

(%
)

B-2) Handwriting Accuracy

our algorithm
random selection

Realism Style
0

20

40

60

80

100

Pa
rti

ci
pa

nt
 A

cc
ur

ac
y

(%
)

C) Overall Results

our algorithm
random selection

Fig. 14. Results from our 170-person study. A-1) Gives the percentage of users (y-axis) who got a given score (x-axis), for both synthetic algorithms.
Participants who do a better job of identifying fakes appear further to the right, and those in the middle (50%) are effectively guessing. A-2) Gives the
performance (y-axis) for each tested pen choice/writing style (x-axis), with 95% confidence intervals indicated. A-3) Gives the percentage of sentences (y-
axis) in task A at each accuracy level (x-axis). B-1,2) Same as A-1,2) but for task B. Note how in B-1) most participants are correctly identifying “random
selection” while for our algorithm, the graph remains in the center, due to the difficulty of identifying our fakes. C) gives the overall performance on both tasks
for both algorithms, with the 95% confidence (bar), the median (line) and minimum/maximum values.

8.2 User Study

We conducted a perceptual study to determine how effective our
system is at generating realistic handwriting. The evaluation is split
into three study-questions: 1) Can we synthesize realistic handwrit-
ing? 2) Can we synthesize handwriting in the same style as a given
author? and 3) How realistic do our synthesized results look com-
pared with real pens when printed with a standard printer?

Questionnaire To evaluate study-questions 1) and 2), we gave a
printed questionnaire containing both real and synthesized hand-
written sentences to 170 different participants. We opted to use
a printed questionnaire, as opposed to an on-screen one, to more
naturally represent how handwriting is typically seen. Each ques-
tionnaire contained two tasks A) and B), respectively addressing
study-questions 1) and 2), with 10 questions per task. Using the five
handwriting styles dataset, we excluded 12 sentences per handwrit-
ing style from the training set to use for participant questionnaires.
We also rendered our synthetic version of each sentence using two
different algorithms – our algorithm (Section 6) and a variant we
refer to as “random selection.” In “random selection” most of our
algorithm’s components have been disabled, such that it is compa-
rable to both Guyon [1996] and Chowdhury et al. [2009]. See Ap-
pendix F for a detailed breakdown of our algorithm’s components.
Each questionnaire contains a random sampling without replace-
ment of these handwriting examples, ensuring that each sentence
was seen by multiple participants. Participants were given ques-
tionnaires containing only results from our algorithm or only re-
sults from “random selection”, in addition to real examples. They
took approximately five minutes on average to complete the whole
questionnaire. A sample questionnaire is in Appendix J.

Realism Evaluation In task A, each participant was shown 10
sentences. For each sentence they were asked to determine if it was
real or “fake.” We chose the term “fake”, as opposed to alternatives
such as “computer generated”, as we did not want to bias partic-
ipants into expecting particular types of artifacts. When choosing
the 10 sentences for each questionnaire, we picked 50% real and
50% “fake” (synthesized). Figure 14 A-1) shows the distribution
of the participants’ scores for both algorithms. A perfect score of
100% indicates that the individual correctly marked all five real
sentences as real and all five synthesized sentences as fake. The
percentage of correct answers across all participants was 53.75%
for our algorithm, and 60.68% for “random selection.” This indi-
cates that participants found it easier to identify writing generated
by “random selection” as being synthesized. Both values are close
enough to random chance (50%) to indicate that users are strug-
gling to tell the difference between real and “fake.” In Figure 14
A-2) we can see the average percentage of sentences in each of
the five different styles that were labeled correctly. Here, a score of
100% indicates that all the sentences from that style were correctly
labeled. We also display the 95% confidence interval in red. Given
these confidence intervals, we conclude that the differences be-
tween the two synthetic approaches, when viewed in isolation, are
not obvious to casual observers. Both algorithms have succeeded at
task A, with neither better than the other.

In Figure 14 A-3) we can see a difficulty histogram for the sen-
tences. The x axis identifies the difficulty of a sentence (percent-
age of test subjects who got it right), while the y axis identifies
the percentage of test sentences that fell into each difficulty level.
Participants tended to be better at identifying “random selection”
generated sentences as being fake compared to our algorithm. Fig-

ACM Transactions on Graphics, Vol. VV, No. N, Article XXXX, Publication date: XXXX 2015.

14 • T. S. F. Haines, O. Mac Aodha and G. J. Brostow

A)

B)

C)

D)

Fig. 15. The four handwriting examples above were all generated by our
system. Fewer than 20% of participants detected that A) and B) are fakes,
while 80% correctly stated that C) and D) are fakes. Note that C) has a bad
ligature between “l” and “y” in the first word while D) also has a long gap
after the second “i” in the first word – we expect these mistakes gave them
away.

ure 15 contains the example sentences from our algorithm that were
both the easiest and hardest for our participants to detect as fakes.

Style Synthesis Evaluation Next, in task B, we evaluated if our
system is capable of generating sentences in the same style as a
specific author. Participants were given a real sentence from one of
H1–H5 for reference, and below this were given two other samples,
in the same handwriting style and pen type. Of the two sentences
below, one was real and the other was generated by one of the al-
gorithms. Each participant was shown 10 different sentence triplets
and, for each, asked to determine which of the two bottom sen-
tences was fake. We ensured that none of the sentences from task
1 appeared in task 2. The overall accuracy across all participants
was 52.4% for our algorithm and 74.1% for “random selection.” In
contrast to the realism evaluation in task 1, participants performed
much worse for the competing method when compared to ours.
While “random selection” can generate plausible sentences in iso-
lation (task 1), when viewed beside real handwriting from the same
individual, it is not convincing. It is worth noting that participants
were only slightly better than guessing at random (50%) for our
algorithm. Figure 14 B-1) displays the participant accuracy, while
B-2) gives the accuracy breakdown per style. We see that most par-
ticipants found it difficult to determine if a given sentences’ style
was authentic or synthetic.

Calibration Evaluation In our final perceptual test, we wished
to determine how good participants were at detecting the synthe-
sized handwriting from our algorithm when printed on paper, com-
pared with real pens. This is a challenging test, as real ink often
exceeds the capabilities of a printer (Subsection 7.1). We created a
set of 15 envelopes with addresses displayed on the front; see sup-
plementary video for examples. Eight of the addresses were gen-
erated by our system and then printed, and the remaining seven
were provided by real subjects with different handwriting styles
and writing implements. Both the real and synthetic envelopes fea-
tured red fineliner, black ballpoint, and blue fountain pen. When
printing our synthesized results, we first color calibrated the out-
put using the method outlined in Section 7.1, and then printed them
using a typical color inkjet printer (Epson WP-4535). Examples of
our synthesized addresses are shown in Figure 16.

Participants were presented with each envelope in turn and asked
to inspect each one to determine if it was written by a human using
a pen, or if it was printed by a computer. They had five seconds to
inspect each envelope. We conducted our test in an office environ-
ment with standard overhead lighting and natural lighting coming
from large outdoor facing windows. 18 participants took part and
overall only 60.73% of the 15 envelopes were correctly identified.

Fig. 18. Example of translation of a Douglas Adams quote into French
and German. The first version is real writing, captured many months after
the sample used to generate the three below it.

8.3 Qualitative Results

Here and in the supplementary video, we explore a range of appli-
cations that our system enables. As described in Section 7.2, we
can transfer the ink style from one pen to another. The input pen in
Figure 10 B) is a black ballpoint. We can render many different pen
types, from pencil to marker, while keeping the same writing style.
Figure 17 shows new sentences synthesized in the style of famous
historical figures. Both of these examples took a novice user under
45 minutes to tag. Figure 18 shows that it is possible to synthesize
in different languages, provided they use the same characters. We
have only explored the English alphabet so far. Appendix H shows
a rendering of multiple paragraphs of text, for medium-sized hand-
writing tasks. Appendix E shows a qualitative comparison of our
output and the “random selection” algorithm.

9. DISCUSSION

We have presented a texture synthesis system that can convincingly
replicate the handwriting of a specific author. Handwriting synthe-
sis is semi-supervised, as a user selects the target text, which is
the interaction required in our use cases. The precise texturing re-
quired to create convincing handwriting is then generated to match
the target text without further user input (unsupervised). Rendering
a sentence typically takes around 8 seconds on a 3.8Ghz i7. User
studies indicate that our approach generates output that looks real
to a casual observer. We are the first to replicate the writing of a
historic figure.

Limitations Joined up handwriting proves the simplest to gen-
erate, as the pen leaves the page relatively rarely. When the pen
does leave the page, effort has to be made to infer its path, to gen-
erate realistic output. This makes print and partly joined-up writ-
ing more challenging. Decorative styles can fail however, particu-
larly ones with long range interactions such as when the cross on
a “t” is drawn across the entire word, with gaps for the ascenders
of other letters. No effort was made to consider writing in a lim-
ited space, where humans gradually start to bunch up their glyphs.
Our model of the writing implement does not include orientation;
consequently calligraphy does not work.

Good quality data is required: Figure 19 shows a failure case
where there is insufficient resolution (glyphs are 30 pixels high) and
data (only 52 glyphs in the source). The semi-automated handwrit-
ing analysis is the greatest time-burden for a user. Our UI makes
this task possible, but future improvements could make the one-

ACM Transactions on Graphics, Vol. VV, No. N, Article XXXX, Publication date: XXXX 2015.

My Text in Your Handwriting • 15

Fig. 16. Addresses synthesized by our algorithm.

Abraham Lincoln Frida Kahlo

Our Result

Our Result

OriginalOriginal

Fig. 17. Rendered quotes, in the handwriting style of famous individuals, though Abraham Lincoln’s sample is from the contentious Bixby letter. Examples
of the authors actual handwriting are on the first row; synthesized results are on the second.

time-effort both simpler and faster. There is also an issue of cov-
erage, as the system does not synthesize entirely new glyphs. If no
sample of a letter written by an author is available then any text con-
taining it cannot be successfully synthesized. This unfortunately
limits use cases built around translation to a foreign language. Lan-
guages with high character counts, e.g. Chinese (> 3000), would
be prohibitively difficult to synthesize, as it is unreasonable to cap-
ture sufficient data.

Future Work Given a large enough database of samples, the
coverage issue could be resolved by finding authors with similar
handwriting, and sharing glyphs between them. Currently, coop-
erative authors all provide around four pages of text. For authors
with simplistic styles this proves excessive, for authors with com-
plex styles it proves insufficient. An active learning approach, e.g.
[Cooper et al. 2007] or [Haines and Xiang 2014], could adapt to
the author and request the right quantity of handwriting samples to
build a successful model.

Our optimization strategy assumes the output is going to a blank
canvas. Instead, document-repair may be possible by adding an-
other term to the cost function C(·), such that the rendered out-
put must agree with existing ink. This would inpaint the damaged
areas of a document, and provide a probability distribution over
words that are no longer readable. Further, layout-style constraints
like those in [Jacobs et al. 2004] could be incorporated to synthe-
size mixed-content documents with handwriting that wraps around
images and other visual elements. Finally, though meant for aes-
thetic purposes, this system has potential forensic applications, e.g.
identifying the author of a handwritten note.

To encourage future work we have releasing both the code and
our complete dataset, which is available from the project website,
http://visual.cs.ucl.ac.uk/pubs/handwriting.

Fig. 19. A failure case with Albert Einstein’s handwriting. On the left his
real writing, on the right output generated with insufficient samples and
resolution.

Acknowledgements

Project supported by EPSRC grants EP/J021458/1, EP/K023578/1
and CR-PLAY, EU project #611089.
We would like to thank Aindri Chakraborty, Bryan O’Regan,
Melissa Terras and the reviewers for their kind assistance.

ACM Transactions on Graphics, Vol. VV, No. N, Article XXXX, Publication date: XXXX 2015.

16 • T. S. F. Haines, O. Mac Aodha and G. J. Brostow

REFERENCES

ALEXANDER, R. M. 1984. The gaits of bipedal and quadrupedal animals.
Robotics Research, 49–59.

ANDRE, J. AND BORGHI, B. 1990. Dynamic fonts. Raster imaging and
digital typography, 198–204.

ANTONACOPOULOS, A., GATOS, B., AND BRIDSON, D. 2007. Page seg-
mentation competition. Document Analysis and Recognition.

BELLMAN, R. 1952. On the theory of dynamic programming. PNAS 38(8),
716–719.

BELONGIE, S. AND MALIK, J. 2000. Matching with shape contexts.
Content-based Access of Image and Video Libraries, 20–26.

BLUM, H. 1967. A transformation for extracting new descriptors of shape.
Models for the Perception of Speech and Visual Form.

BONNEEL, N., VAN DE PANNE, M., LEFEBVRE, S., AND DRETTAKIS, G.
2010. Proxy-guided texture synthesis for rendering natural scenes. Proc.
Vision Modeling and Visualization.

BOOKSTEIN, F. L. 1989. Principal warps: Thin-plate splines and the de-
composition of deformations. PAMI 11(6), 567–585.

BOYKOV, Y. AND KOLMOGOROV, V. 2004. An experimental compari-
son of min-cut/max-flow algorithms for energy minimization in vision.
PAMI 26(9), 1124–1137.

BOYKOV, Y. Y. AND JOLLY, M.-P. 2001. Interactive graph cuts for optimal
boundary & region segmentation of objects in n-d images. ICCV , 105–
112.

BRAND, M. AND HERTZMANN, A. 2000. Style machines. SIGGRAPH.
BREIMAN, L. 2001. Random forests. Machine Learning.
CAMPBELL, N. D. F. AND KAUTZ, J. 2014. Learning a manifold of fonts.

SIGGRAPH.
CHANG, W.-D. AND SHIN, J. 2012. A statistical handwriting model for

style-preserving and variable character synthesis. Document Analysis and
Recognition 15(1), 1–19.

CHOI, H., CHO, S. J., AND KIM, J. H. 2004. Writer dependent online
handwriting generation with bayesian networks. Frontiers in Handwrit-
ing Recognition, 130–135.

CHOWDHURY, S., DAS, S., ROY, D., SARKAR, U., AND CHAUDHURI,
B. B. 2009. A complete method of personal handwriting synthesis. Ad-
vances in Graphonomics, 250–253.

COMANICIU, D. AND MEER, P. 2002. Mean shift: A robust approach
toward feature space analysis. PAMI 24(5), 603–619.

CONNELL, S. D. AND JAIN, A. K. 2002. Writer adaptation for online
handwriting recognition. PAMI 24(3), 329–346.

COOPER, S., HERTZMANN, A., AND POPOVIC, Z. 2007. Active learning
for real-time motion controllers. SIGGRAPH.

CORRELL, S. 2000. Graphite: An extensible rendering engine for complex
writing systems. Unicode Conference 17.

CRIMINISI, A. AND SHOTTON, J. 2013. Decision Forests for Computer
Vision and Medical Image Analysis. Springer.

DALAL, N. AND TRIGGS, B. 2005. Histograms of orientated gradients for
human detection. CVPR, 886–893.

DEVROYE, L. AND MCDOUGALL, M. 1995. Random fonts for the simu-
lation of handwriting. Electronic Publishing.

DINGES, L., AL-HAMADI, A., AND ELZOBI, M. 2013. An approach for
arabic handwriting synthesis based on active shape models. Document
Analysis and Recognition, 1260–1264.

DOYLE, A. C. 1901. Letter from Arthur Conan Doyle to Herbert Green-
hough Smith. https://commons.wikimedia.org/wiki/File:

Letter_from_Arthur_Conan_Doyle_to_Herbert_Greenhough_

Smith.jpg, Creative Commons Attribution-Share Alike 2.0, Toronto
Public Library.

EBERT, D. S., MUSGRAVE, F. K., PEACHEY, D., PERLIN, K., AND WOR-
LEY, S. 2002. Texturing and Modeling: A Procedural Approach. Morgan
Kaufmann.

EFROS, A. A. AND FREEMAN, W. T. 2001. Image quilting for texture
synthesis and transfer. SIGGRAPH 28, 341–346.

EFROS, A. A. AND LEUNG, T. K. 1999. Texture synthesis by non-
parametric sampling. ICCV 2, 1033–1038.

EINSTEIN, A. 1956. Investigations on the theory of the brownian move-
ment. Courier Dover Publications.

ELARIAN, Y., ABDEL-AAL, R., AHMAD, I., PARVEZ, M. T., AND ZI-
DOURI, A. 2014. Handwriting synthesis: classifications and techniques.
IJDAR 17, 455–469.

ELARIAN, Y., AHMAD, I., AWAIDA, S., AL-KHATIB, W. G., AND ZI-
DOURI, A. 2015. An arabic handwriting synthesis system. Pattern
Recognition 48, 3, 849–861.

ELARIAN, Y. S., AL-MUHTASEB, H. A., AND GHOUTI, L. M. 2011. Ara-
bic handwriting synthesis.

FORD, L. R. AND FULKERSON, D. R. 1956. Maximal flow through a
network. Canadian Journal of Mathematics 8, 399–404.

FUKUNAGA, K. AND HOSTETLER, L. D. 1975. The estimation of the
gradient of a density function,with applications in pattern recognition.
Trans. Information Theory 21, 32–40.

GANGADHAR, G., JOSEPH, D., AND CHAKRAVARTHY, V. S. 2007. An os-
cillatory neuromotor model of handwriting generation. Document Anal-
ysis and Recognition 10(2), 69–84.

GARNER, R. 2005. Post-it note persuasion: A sticky influence. J. Consumer
Psycology 15, 230–237.

GRAVES, A. 2013. Generating sequences with recurrent neural networks.
arXiv Preprint.

GUERFALI, W. AND PLAMONDON, R. 1995. The delta lognormal theory
for the generation and modeling of cursive characters. Document Analysis
and Recognition 3(1).

GUPTA, G. AND MCCABE, A. 1997. A review of dynamic handwritten
signature verification. Tech. rep., James Cook University.

GUYON, I. 1996. Handwriting synthesis from handwritten glyphs. Fron-
tiers of Handwriting Recognition, 309–312.

HAINES, T. S. F. AND XIANG, T. 2014. Active rare class discovery and
classification using dirichlet processes. IJCV 106(3), 315–331.

HINTON, G. AND NAIR, V. 2005. Inferring motor programs from images
of handwritten digits. NIPS, 515–522.

HO, T. K. 1995. Random decision forests. Proc. Document Analysis and
Recognition 1, 278–282.

HUANG, W., LIN, Z., YANG, J., AND WANG, J. 2013. Text localization
in natural images using stroke feature transform and text covariance de-
scriptors. ICCV .

JACOBS, C., LI, W., SCHRIER, E., BARGERON, D., AND SALESIN, D.
2004. Adaptive document layout. Commun. ACM 47, 8 (Aug.), 60–66.

KALMAN, R. E. 1960. A new approach to linear filtering and prediction
problems. ASME–Basic Engineering 82, 35–45.

KNUTH, D. E. 1979. Metafont: a system for alphabet design. Tech. rep.,
Stanford University.

KWATRA, V., SCHÖDL, A., ESSA, I., TURK, G., AND BOBICK, A. 2003.
Graphcut textures: Image and video synthesis using graph cuts. TOG.

LEE, H., KWON, S., AND LEE, S. 2006. Real-time pencil rendering. In
NPAR. 37–45.

LEWIS, J. P. 1984. Texture synthesis for digital painting. Computer Graph-
ics 18(3).

LIN, Z. AND WAN, L. 2007. Style-preserving english handwriting synthe-
sis. Pattern Recognition 40, 2097–2109.

ACM Transactions on Graphics, Vol. VV, No. N, Article XXXX, Publication date: XXXX 2015.

My Text in Your Handwriting • 17

LOWE, D. G. 2004. Distinctive image features from scale-invariant key-
points. IJCV .

LU, J., YU, F., FINKELSTEIN, A., AND DIVERDI, S. 2012. Helpinghand:
Example-based stroke stylization. SIGGRAPH 31(4).

MAO, J. AND MOHIUDDIN, K. M. 1997. Improving ocr performance using
character degradation models and boosting algorithm. Pattern Recogni-
tion Letters 18, 1415–1419.

MARCELO, B., SAPIRO, G., CASELLES, V., AND BALLESTER, C. 2000.
Image inpainting. SIGGRAPH, 417–424.

MARTI, U.-V. AND BUNKE, H. 2002. Using a statistical language model
to improve the performance of an hmm-based cursive handwriting recog-
nition systems. Hidden Markov models.

MOHAMMED, U., PRINCE, S. J. D., AND KAUTZ, J. 2009. Visio-lization:
Generating novel facial images. TOG 28(3).

MORI, M., SUZUKI, A., SHIO, A., AND OHTSUKA, S. 2000. Generating
new samples from handwritten numerals based on point correspondence.
IAPR-IWFHR.

MUELLER, S., HUEBEL, N., WAIBEL, M., AND ANDREA, R. D. 2013.
Robotic calligraphy - learning how to write single strokes of chinese and
japanese characters. IROS.

NORVIG, P. 2014. Letter frequencies for scrabble. http://norvig.com/
scrabble-letter-scores.html.

PAN, S. J. AND YANG, Q. 2010. A survey on transfer learning. Knowledge
and Data Engineering 22(10), 1345–1359.

PAPANDREOU, G. AND YUILLE, A. L. 2011. Perturb-and-map random
fields: Using discrete optimization to learn and sample from energy mod-
els. ICCV , 193–200.

PARIZI, S. N., VEDALDI, A., ZISSERMAN, A., AND FELZENSZWALB, P.
2014. Automatic discovery and optimization of parts for image classifi-
cation. arXiv preprint, arXiv:1412.6598.

PERVOUCHINE, V. AND LEEDHAM, G. 2007. Extraction and analysis of
forensic document examiner features used for writer identification. Pat-
tern Recognition 40, 1004–1013.

PLAMONDON, R. AND SRIHARI, S. N. 2000. On-line and off-line hand-
writing recognition: A comprehensive survey. PAMI.

PORTER, T. AND DUFF, T. 1984. Compositing digital images. Computer
Graphics 18, 253–259.

PORTILLA, J. AND SIMONCELLI, E. P. 2000. A parametric texture model
based on joint statistics of complex wavelet coefficients. IJCV 40, 49–70.

HISTORY OF SCRABBLE. 2014. http://www.scrabble-assoc.com/

info/history.html.
PROJECT GUTENBERG. 2014. http://www.gutenberg.org/.
REINHARDT, T. 2014. My script font. http://myscriptfont.com.
ROTHER, C., KOLMOGOROV, V., AND BLAKE, A. 2004. ”grabcut” inter-

active foreground extraction using iterated graph cuts. SIGGRAPH.
SCHÖDL, A., SZELISKI, R., SALESIN, D. H., AND ESSA, I. 2000. Video

textures. SIGGRAPH, 489–498.
SCHRODER, M. 2001. Emotional speech synthesis: A review. Interspeech.
SHILMAN, M., TAN, D. S., AND SIMARD, P. 2006. Cuetip: A mixed-

initiative interface for correcting handwriting errors. User interface soft-
ware and technology, 323–332.

SRIHARI, S. N., CHA, S.-H., ARORA, H., AND LEE, S. 2002. Individual-
ity of handwriting. J. Forensic Science 47(4).

SUN, J., YUAN, L., JIA, J., AND SHUM, H.-Y. 2005. Image completion
with structure propagation. SIGGRAPH.

THOMAS, A. O., RUSU, A., AND GOVINDARAJU, V. 2009. Synthetic
handwritten captchas. Pattern Recognition.

VAN GALEN, G. P. 1991. Handwriting: Issues for a psychomotor theory.
Human Movement Science 10, 165–191.

VARGA, T. AND BUNKE, H. 2003. Generation of synthetic training data
for an hmm-based handwriting recognition system. Document Analysis
and Recognition, 618–622.

VARGA, T. AND BUNKE, H. 2004. Comparing natural and synthetic train-
ing data for off-line cursive handwriting recognition. Frontiers in Hand-
writing Recognition 9, 221–225.

WAN, L. AND LIN, Z. 2009. Signature sample synthesis. Encyclopedia of
Biometrics, 1205–1210.

WANG, J., WU, C., XU, Y.-Q., AND SHUM, H.-Y. 2004. Combining shape
and physical models for online cursive handwriting synthesis. Document
Analysis and Recognition.

WANG, J., WU, C., XU, Y.-Q., SHUM, H.-Y., AND JI, L. 2002. Learning-
based cursive handwriting synthesis. Frontiers in Handwriting Recogni-
tion 8, 157–162.

WANG, Y., WANG, H., PAN, C., AND FANG, L. 2008. Style preserving
chinese character synthesis based on hierarchical representation of char-
acter. Acoustics, Speech and Signal Processing.

WARNOCK, J., GESCHKE, C., BROTZ, D., TAFT, E., AND PAX-
TON, B. 1984. PostScript. https://www.adobe.com/products/

postscript/pdfs/postscript_is_20.pdf.
WEI, L.-Y., LEFEBVRE, S., KWATRA, V., AND TURK, G. 2009. State of

the art in example-based texture synthesis. Eurographics.
WERNER, L. 1999. Getting java ready for the world: A

brief history of IBM and Sun’s internationalization efforts.
http://www.icu-project.org/docs/papers/history_of_

java_internationalization.html.
WILLIAMS, B. H., TOUSSAINT, M., AND STORKEY, A. J. 2007. Mod-

elling motion primitive and their timing in biologically executed move-
ments. NIPS.

WILLIAMS, G. 2014. Font forge. http://fontforge.org/.
XIONG, C., JOHNSON, D., XU, R., AND CORSO, J. J. 2012. Random

forests for metric learning with implicit pairwise position dependence.
Knowledge Discovery and Data Mining.

ZHANG, T. Y. AND SUEN, C. Y. 1984. A fast parallel algorithm for thin-
ning digital patterns. Communications of the ACM.

ZHENG, Y. AND DOERMANN, D. 2005. Handwriting matching and its ap-
plication to handwriting synthesis. Document Analysis and Recognition.

ZITNICK, C. L. 2013. Handwriting beautification using token means. SIG-
GRAPH.

ACM Transactions on Graphics, Vol. VV, No. N, Article XXXX, Publication date: XXXX 2015.

18 • T. S. F. Haines, O. Mac Aodha and G. J. Brostow

APPENDIX

A. INKED PIXEL EXTRACTION

The task is to classify pixels as belonging to the background or fore-
ground, using the the estimated ink density, d (Subsection 5.1.1).
Our approach is related to [Rother et al. 2004]. Each pixel in the
image is modeled as a foreground/background binary random vari-
able, connected in a grid to form a conditional random field (CRF).
The goal is to minimize∑

p∈V

U(p) +
∑

(p,q)∈Ed

P (p, q), (10)

where V is the set of random variables (pixels) and Ed is the set of
edges connecting pixels in a 4-way neighborhood. The unary term,
U(p), is derived from the density map, d,

U(p) = mp

{
−8 dp = 0

12 min(dp, 1) dp > 0,
(11)

wherem is the mask being optimized: 1 for foreground, 0 for back-
ground. It encourages high density pixels to belong to the fore-
ground, while pixels with no density are strongly encouraged to
belong to the background, which is important to separate lines that
are spatially near each other. The pairwise term, P (p, q), encour-
ages pixels with similar colors to share the same label,

P (p, q) =

{
0 mp = mq

γλ

λ+
√

(c̄p−c̄q)T (c̄p−c̄q)
mp 6= mq,

(12)

where c̄ is the color of a pixel ({cr, cg, cb} ∈ [0, 1]), and λ sets the
color difference at which the cost of assigning different labels to
adjacent pixels has dropped to half its maximum. γ is the maximum
value, which is set to 64; λ is set to 0.5. This CRF is solved with
graph cuts [Boykov and Kolmogorov 2004].

B. LINE-AWARE SMOOTHING

The initial segmentation, from Appendix A, is converted into a
signed distance function, where each pixel contains the distance
to the nearest ink edge. The distance is negative if it is inside the
ink, positive otherwise. Our aim is to smooth this field. For pixel
(i) and two of its direct neighbors (j, k), the vector n̂ toward the
nearest line can be computed as

n̂ ∝ (sj − si)n̂ij + (sk − si)n̂ik, (13)

where s is the signed distance field and n̂ij is the unit vector going
from pixel i to pixel j. This estimate assumes that the pixels have
the same nearest line, which can be approximated as being straight
over short distances. For a pixel’s 8-way neighborhood, there are 8
such estimates (using adjacent neighbors only). They are all calcu-
lated, and the most consistent used to smooth the field at the current
pixel. Smoothing consists of estimating the current pixel’s signed
distance value using each of its 8 neighbors

s′i = sj + n̂ · n̄ij , (14)

where n̄ij is the offset from pixel i to pixel j (unnormalized n̂ij).
The pixel’s signed distance is updated to a robust average of the
estimates, specifically the median. The most consistent estimate is
defined as the line direction that results in the least variability in
the estimates. Iteratively updating the signed distance function with
this robust estimate smooths the edges of lines without creating

holes in lines that are only a few pixels wide. Finally, the field is
converted back to a mask by checking the sign of each pixel.

C. MATTING

The segmentation of the line is dilated to make sure all parts of
the line are excluded, then the ink area is inpainted [Marcelo et al.
2000] to estimate the background on which the author wrote. At
each pixel we have the matting equation [Porter and Duff 1984]

c̄ = αī+ (1− α)p̄, (15)

where c̄ is the known image color, p̄ the background that has been
estimated with inpainting, ī the unknown ink color11, and α the
unknown alpha value. This is a linear equation that is satisfied by
many values of α and ī. All values are constrained to lie in [0, 1],
and we select the lowest α value within this range. This is equiva-
lent to setting at least one value of ī to be 0 or 1, depending on if
the background is brighter or darker than the ink. Given that (15)
rearranges as

α =
cj − pj
ij − pj

, (16)

where j ∈ {r, g, b} we can solve for all 6 combinations of color (r,
g and b) and limiting ink values (ij = 0 and ij = 1). This equation,
calculated for each combination, indicates that the real α must be
in [α, 1], otherwise the constraint is not satisfied. Therefore, the
maximum of the six α values will be the lowest α that does not
violate the [0, 1] constraint for ī, so alpha is set to

α = max
j∈{r,g,b}

[
max

(
cj − pj
0− pj

,
cj − pj
1− pj

)]
, (17)

and ink color to

ī =
c̄− (1− α)p̄

α
, (18)

noting that care has to be taken to handle division by zero. This is
justified under the assumption that the colors of the ink and paper
are linearly independent. If they are not (e.g. black ink on white
paper), it is equivalent to assuming the ink is the strongest color it
can be. For black ink, this is correct, while for gray ink on white
paper, its transparency will be over-estimated, i.e. it will be mod-
eled as transparent black ink. At least when placed on the original
background, this approach guarantees the ink will appear identical
to the original.

D. TAGGING INTERFACE

For correcting tags the interface offers the possible interactions of:

—Drawing a line across the pen path to split the path.
—Drawing a line from one part of the pen path to another to merge

them. If there are splits dividing them, they are removed, other-
wise a link is created.

—Drawing a line across a link to delete it.
—Typing while the cursor is over a segmented glyph to label it. Un-

derscores are used to indicate the start and end of a word: Before
the character to indicate the start of a word, after the character
to indicate the end of a word. Single letter words are tagged as
“ a .”

11Assuming the ink is the same color as the previously extracted mode does
not work, as ink color can vary considerably.

ACM Transactions on Graphics, Vol. VV, No. N, Article XXXX, Publication date: XXXX 2015.

My Text in Your Handwriting • 19

Dataset Line Extraction Tagging Algorithms Total
Neat Fineliner, Manual 12:13 3:02 N/A 16:15

Neat Fineliner 0:17 2:24 0:12 2:54
Messy Fineliner 0:28 2:20 0:12 3:00

Messy Pencil 3:06 2:21 0:10 5:37

Fig. 20. Timing for several data sets, given as hours:minutes. Line extrac-
tion is the time spent fixing segmentation errors for the line; Tagging is the
time spent fixing errors with character tagging, including separation. Algo-
rithms is the time spent running the automatic algorithms, which does not
involve the user. Times are extrapolated from tagging a subset of each data
set. For fairness, the character recognition model did not include any train-
ing exemplars from these authors. In actual usage, you retrain the model
regularly, such that recognition gets better as you train more examples from
a given author.

The above works with either a mouse or tablet. Panning and zoom-
ing are supported using the tablet pen buttons and swipes, or the
right mouse button and wheel. Please refer to the supplementary
video for a demonstration of the full tagging process.

D.1 Timing

The process of preparing a handwriting sample for synthesis re-
quires a substantial investment of time by the user, as even if the
automatic process performed perfectly, its output still needs to be
checked for errors. Figure 20 contains the times for tagging several
typical files. The biggest factor is the writing implement. A fineliner
gives a consistent clean line that is almost always extracted without
error – the time given is for looking over the line and checking it is
correct. At the other end of the spectrum is pencil, where the line
is inconsistent, can contain gaps and can become very faint when
the pencil needs sharpening. This requires a lot of work to correct.
The tagging time without retraining remains extremely consistent,
at around 2 hours and 20 minutes, as our recognition model lacks
the quantities of training data required for it to generalize well to
previously unseen authors. However, in practice we find that the
per file tagging time is reduced due to retraining, typically to half
the starting time (e.g. 563 seconds to 256 seconds per line, for one
complete sequence) as the model learns to recognize the specific
author, and hence it remains a valuable feature. As a point of com-
parison, an estimate of how long manual tagging would take is in-
cluded for neat fineliner. It is extrapolated from a single line as the
tagger got hand cramps, despite using a tablet. “Manual” refers to
avoiding all automation – line extraction by painting over the text
in an image editor to create a binary mask, followed by using the
tagger without any automation. In conclusion, while the automated
system is not perfectly automatic it is at least three times faster
than manual, and can be as much as eight times faster. Convincing
handwriting synthesis would be impossibly difficult without it.

ACM Transactions on Graphics, Vol. VV, No. N, Article XXXX, Publication date: XXXX 2015.

20 • T. S. F. Haines, O. Mac Aodha and G. J. Brostow

E. RANDOM SELECTION COMPARISON

Comparison of the simplified random selection approach (left column) and our result (right column) with real (center):

ACM Transactions on Graphics, Vol. VV, No. N, Article XXXX, Publication date: XXXX 2015.

My Text in Your Handwriting • 21

F. SYSTEM COMPONENTS

The following sequence shows the output of the algorithm, starting with a minimal version and working up to the presented approach with
all features turned on.

a) This is the random selection algorithm with which we
compare (Section 8 / Appendix E), and is similar to both
Guyon [1996] and Chowdhury et al. [2009]. Glyphs are se-
lected randomly and placed in sequence, with constant horizon-
tal spacing and vertical position copied without adjustment from
the source. This improves on Guyon [1996] by using whole sen-
tences as input, rather than individually written fragments. We
have also left our matting solution turned on (Appendix C), so
this output may be composited over any background.

b) This variant adds dynamic programming selection of glyphs.
Because it is matching the average ink properties of the glyphs,
the sudden variations in inking are gone. The flow is also much
improved, if not perfect, due to it selecting glyphs that can lead
into each other.

c) This variant adds dynamic horizontal spacing. The handwrit-
ing is much tighter, and no longer has large spurious gaps be-
tween glyphs.

d) Includes vertical spacing inference using a random forest.
The heights are tweaked to better match real handwriting; in
particular note how the curve into the “g” of excogitate has been
smoothed, and that the comma after excogitate is now in the
correct position, on the baseline.

e) Ligatures are now included. They are not consistent with the
author’s writing style prior to this point.

f) Finally, GraphCut textures [Kwatra et al. 2003] regularizes,
to output a continuous and visually coherent line.

G. COMPETING METHODS

In this section we display original results from various other handwriting synthesis papers. Where possible, we also give an example of the
real input handwriting on the left. In the case of the first three comparisons, the corresponding original handwriting samples are not available.
In contrast to our algorithm, no other methods generate long passages of text or explore the problem of synthesizing text in the style of
historic figures.

With the exception of [Chowdhury et al. 2009] and [Elarian et al. 2015], the majority of other works use tablet data as input. As pointed
out in the main text, writing on a tablet is very different from writing on paper, and can significantly change an individual’s handwriting style.
The work of Graves [2013], while impressive, is restricted to only generating vectorized lines as output. In situations where real scanned
samples are used, they are often transformed, resulting in the loss of texture information. In the case of [Chowdhury et al. 2009], the input
handwriting samples are scanned in from paper, converted to grayscale, and then binarized, which results in a loss of detail.

Synthesizing the flow of natural handwriting is another important element that can make synthesized handwriting look realistic. Results
that lie directly on the baseline can look unnatural. In the case of Lin & Wan [2007], this problem arises as handwriting samples are collected
one word at a time, and thus no flow information is present in the input data.

ACM Transactions on Graphics, Vol. VV, No. N, Article XXXX, Publication date: XXXX 2015.

22 • T. S. F. Haines, O. Mac Aodha and G. J. Brostow

Chowdhury et al. 2009

Wang et al. 2002

Wang et al. 2004

Guyon 1996

Graves 2013

Dinges et al. 2013

Lin and Wan 2007

Elarian et al. 2014

Real Handwriting Synthetic Handwriting

Synthetic Handwriting

ACM Transactions on Graphics, Vol. VV, No. N, Article XXXX, Publication date: XXXX 2015.

My Text in Your Handwriting • 23

H. HANDWRITTEN ABSTRACT

This paper’s abstract, as synthesized by our system:

ACM Transactions on Graphics, Vol. VV, No. N, Article XXXX, Publication date: XXXX 2015.

24 • T. S. F. Haines, O. Mac Aodha and G. J. Brostow

I. EXAMPLE INPUT

Input page used for training the H4 model. (The dark horizontal lines are a scanner fault, due to sending pencil through a feed-scanner.
Ignored as they missed the author’s sample.)

ACM Transactions on Graphics, Vol. VV, No. N, Article XXXX, Publication date: XXXX 2015.

My Text in Your Handwriting • 25

J. EXAMPLE SURVEY (OUR ALGORITHM)

0009B

Age? Have you done this survey before?

Nationality? What department are you from?

At what age did you first start writing in English? � 0-5, � 5-10, � 10-18, � 18+

Section A

Each row contains a handwriting sample - they are either real or have been faked. For each sample, tick the
box corresponding to the class you believe it to be.

Sample Real Fake

1 � �
2 � �
3 � �
4 � �
5 � �
6 � �
7 � �
8 � �
9 � �
10 � �

Answers:1)fake,2)fake,3)fake,4)real,5)fake,6)real,7)real,8)fake,9)real,10)real.

ACM Transactions on Graphics, Vol. VV, No. N, Article XXXX, Publication date: XXXX 2015.

26 • T. S. F. Haines, O. Mac Aodha and G. J. Brostow

Section B

In this series of questions you are given a reference example of an individual’s handwriting and two other samples
- one of which is fake. For each sample, tick the box corresponding to the one you believe to be fake.

1

� A

� B

2

� A

� B

3

� A

� B

4

� A

� B

5

� A

� B

2

Answers:1)B,2)A,3)B,4)B,5)B.

ACM Transactions on Graphics, Vol. VV, No. N, Article XXXX, Publication date: XXXX 2015.

My Text in Your Handwriting • 27

6

� A

� B

7

� A

� B

8

� A

� B

9

� A

� B

10

� A

� B

3

Answers:6)B,7)B,8)A,9)B,10)B.

ACM Transactions on Graphics, Vol. VV, No. N, Article XXXX, Publication date: XXXX 2015.

28 • T. S. F. Haines, O. Mac Aodha and G. J. Brostow

K. COLOR CALIBRATION

The color calibration target – the entire RGB color cube, sampled 8 × 8 × 8 plus 256 levels of gray scale, as humans are more sensitive to
luminance:

ACM Transactions on Graphics, Vol. VV, No. N, Article XXXX, Publication date: XXXX 2015.

