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1. Introduction

This supplemental material contains multiple topics we could not
cover in-depth in the main paper due to space constraints. First,
Section 2 describes our dataset and its properties in more details.
Details on the network architecture are presented in Section 3. We
publish, both, the dataset and the implementation code [RSB∗21]
alongside the paper. Next, we attempt a speed comparison of our
method against a more modern rendering system in Section 4. And
finally Section 5 and the following present a study on the behavior
of differentiable rendering [NDSRJ20] for reconstructing the albedo
of homogeneous scattering media.

2. Training Data

Overall our training set contains 346 volumes with spatially varying
scattering and absorption coefficient. These values belong to 5 dis-
crete materials (CMYKW) and have three color channels (RGB)
each. Technically this is implemented by storing one index per
voxel, and looking up the exact values from a material table. This
way, our generated dataset can also be used with a set of different
printing materials in the future.

Figure 1 visualizes the collection of shapes our objects repre-
sent. Note how sparsely we sample curvature and object rotation.
Our weight-sharing approach on coordinate-grid octants relaxes the
under-sampling of rotations and thus leaves room in the dataset for
other dimensions.

As we state in the paper, the whole dataset does not fit into mem-
ory (> 256GB) during training and reloading large volume chunks
considerably hinders training speed. Thus it becomes more impor-
tant how the dataset content is chosen, as the budget is not infinite.
Table 1 lists the exact composition of our dataset. The distribution
of values is either coming from our custom volumetric generator
combined with halftoning or a plain homogeneous volume in case
of the primaries. Six volumes are hand-picked as the validation set.

3. Network Architecture

When talking about network architectures we distinguish be-
tween three different variants:

1. ARPNN , the original method by [KMM∗17].
2. ABaseline, our baseline including minor adaptations.
3. AOurs, our proposed architecture.

In Table 2 we show their respective properties. In the follow-
ing we describe technical details on each variant while refering to
nomenclature established in Figure 5b and 5c of the main paper.
Generally all dense layers have biases enabled and activation dis-
abled unless otherwise mentioned. Throughout the network a ReLu
activation function is used and explicitly marked in the network
diagram.

Original Architecture The Multilayer Perceptron (MLP) variant
proposed by the authors [KMM∗17], consists of the same number
of blocks as the stencil hierarchy Σ has levels (K). Each block con-
sists of three dense layers D[3,5] and processes one level k as input
together with information from previous blocks. Although in their
paper, they refer to it as two layers, whereD3 andD4 are combined
into one. That is, becauseD3 does not have biases. After the blocks,
three dense layers D[6,8] compose the information collected from

Figure 1: Collection of shapes we include in our dataset. Each object
is included multiple times in different sizes between 5 mm to 20 mm.
Despite curvature being under-represented, the network generalizes
even to concave geometry
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Table 1: Different shapes along with their volumetric material dis-
tributions (filling), sizes and numbers used in our dataset of 346
objects.

Shape Filling Size / Thickness Count

Cube

Generator

5 mm 21
10 mm 21
15 mm 21
20 mm 21

Primaries
(CMYKW)

5 mm 5
10 mm 5
15 mm 5
20 mm 5

Sphere

Generator

5 mm 21
10 mm 21
15 mm 21
20 mm 21

Primaries
(CMYKW)

5 mm 5
10 mm 5
15 mm 5
20 mm 5

Cube (rot.) Generator

5 mm 21
10 mm 21
15 mm 21
20 mm 21

XY plane Generator
1 mm 6
2 mm 6

2.5 mm 6

YZ plane Generator
1 mm 6
2 mm 6

2.5 mm 6

XZ plane Generator
1 mm 6
2 mm 6

2.5 mm 6

the stencils into a single output value. The width of the layers is
given by the product of stencil dimensions (|Σk|= I).

The original method separates single-scattering (which is simu-
lated using Monte Carlo (MC)) and only learns multiple-scattering
inside the network. The authors also propose to use K = 10 levels
in the stencil hierarchy for their cloud rendering application.

Baseline Architecture When thinking about a re-implementation
within our framework for scattering 3D prints, one quickly notices,
that a separate single-scattering simulation is not necessary with
such diffuse illumination. Thus, we include this change into our
baseline implementation as to avoid any unnecessary computational
overhead.

With the considerably higher scattering density of the 3D print-
ing materials when compared to clouds, the highest levels of the
stencil have less influence. From experiments, we converged to the
parameter K = 9 and thus reducing the network capacity.

Table 2: Feature matrix of architecture variants covered in this paper

Feature ARPNN ABaseline AOurs

Intended use clouds fabrication fabrication
Lighting directional diffuse diffuse
Per-ray inference 3 7 7

MC
single-scattering
simulation

3 7 7

Levels K 10 9 9
Spatially-varying
parameter

σt σs,σa σs,σa

Trainable layers 33 30 8

Weight sharing
over levels (≡L)

7 7 3

Weight sharing
over octants (≡O)

7 7 3

Apart from that, the baseline resembles the original architecture
and contains K ∗3+3 = 30 dense layers.

Our Architecture In our architecture we introduce two weight-
sharing schemes that are motivated based on volumetric light trans-
port. First of all, all blocks share the weights with each other
(≡L), and only the inputs (scattering and absorption coefficients)
are scaled for physical correctness. Second, we introduce weight-
sharing over symmetric parts of the stencil Σ to allow for rotational
invariance (≡O). The latter is applied twice througout the architec-
ture, once for processing inputsD[1,2] and for processing the outputs
D[6,8].

When processing octants, we slice the stencils as described in
Figure 6b in the main paper, rotate them to a common alignment
and apply the corresponding layers to the eight parts. After con-
catenation, the network flow continues in dense layers with a wider
width, due to the overlaps in the slicing.

In total, our architecture consists of only eight trainable layers.

Figure 2 shows an extended version of Fig 13 of the main paper,
where spectral prediction is shown for the baseline architecture.

4. Speed Comparison

For obtaining an impression on the relative speed of our method
versus a more modern rendering system, we conducted an exper-
iment and compared against Mitsuba2 [NDVZJ19] (on commit
3214250). In the main paper, we compare on more results to an
improved volume path-tracer based on [Jak10]. Here we take a sin-
gle object (YELLOW VASE) and manually re-render it using various
rendering systems and configurations. Due implementation differ-
ences we cannot render a full surface prediction based on a custom
camera model, but for speed comparisons we deem it sufficient to
render a perspective image with narrow field of view, where every
pixel hits the volume. We render a 128× 128 image with 512 spp,
the volpath integrator (where applicable) and a maximum path-
length of 1000 (Russian Roulette disabled). Allowing for a compar-
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(a) MC 128 spp (b) Baseline (c) Difference (d) RPNN (Ours) (e) Difference

Figure 2: Extended version of Fig. 13 of the main paper for a baseline comparison. Spectral predictions for an object formed by virtual
spectrally-defined materials. Our network generalizes well over scattering parameters from only 15 discrete values and can accurately predict
continuous spectral curves. CIE dE 2000: 0 10

Table 3: Timings for a single forward prediction of the YELLOW VASE (Iteration 10). The relative speed for [NDVZJ19] is calculated between
the mean and maximum (as opposed to the sum) of all three color channels. Despite the difference in hardware setup, the relative speed is
comparable to Table 1 in the main paper.

Method Intersection Red Green Blue Relative Speed

[Jak10] k-d tree 897 s 924 s 1006 s 0.517×
[SRB∗19] k-d tree 483 s 475 s 502 s 1×
[NDVZJ19] gpu_mono OptiX7+RTX 11354 s 5652 s 14732 s 0.099–0.138×

[NDVZJ19] scalar_mono
k-d tree 2102 s 489 s 526 s 0.695–1.406×
Embree 1745 s 217 s 241 s 0.837–1.990×

[NDVZJ19] packet_mono
k-d tree 2769 s 636 s 762 s 0.528–1.052×
Embree 2367 s 288 s 342 s 0.617–1.462×

Homogeneous Medium

[NDVZJ19] gpu_mono OptiX7+RTX 162 s 163 s 162 s 8.984–8.996×

[NDVZJ19] scalar_mono
k-d tree 73 s 71 s 70 s 20.037–20.496×
Embree 62 s 63 s 61 s 23.144–23.512×

[NDVZJ19] packet_mono
k-d tree 76 s 77 s 76 s 19.095–19.157×
Embree 12 s 12 s 12 s 119.127–120.063×

ison with Table 1 in the main paper, we calculate relative speeds
compared to the same reference implementation.

As the previous version of Mitsuba [Jak10] does not support a
spectrally-varying extinction coefficient, a common approach is to
run three independent renderings for each color channel. That is
the approach of [SRB∗19] and also the one our Radiance Predict-
ing Neural Network (RPNN) is based on. Forming matters more
complicated, Mitsuba2 [NDVZJ19] does support spectrally-varying
extinction coefficients. We still report times for three independent
renderings and assume the overall performance to lie between the
mean and the maximum. Given the dominant factor is delta tracking
for the heterogeneous medium, this is a sensible conclusion.

CPU algorithms are run with 32-threads on two Intel E5-2680 v3
CPUs (AVX2 enabled, 8-wide SIMD) using the built-in k-d tree or
Embree for ray intersection. On the GPU, renderings used Nvidia
Optix7 on a Nvidia TITAN RTX with 24GB memory of which
15GB were occupied. The experiments were run on a different hard-
ware setup than the results obtained in the main paper. We observe
a ∼2.7× slow down when switching environments. Still, the mea-

surements are performed consistently for all algorithms and relative
speed factors are comparable to our main results.

The resulting timings are listed in Table 3. We observe that the
native Mitsuba volpath integrator [Jak10] is about 2× slower due
to inefficient emitter sampling through a dielectric interface.

A prominent observation is that GPU rendering is considerably
slower than CPU rendering in Mitsuba2. That is an observation that
others also made previously [Wa20] and is attributed by the authors
to the wavefront approach. It also seems most affected by different
densities of the three channels.

Rendering on the CPU is likely to be on par with [Jak10].

When switching the medium to be a homogeneous scatterer with
textured albedo, the rendering times improve drastically. This mea-
surement is important to keep in mind for the upcoming sections.

5. Differentiable Rendering Optimization Setup

After the publication of several differentiable volume rendering
papers [NDVZJ19, ZWZ∗19, NDSRJ20] in recent years, the land-
scape of volumetric reconstruction techniques changed considerably.
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With the most recent work [NDSRJ20], an application becomes fi-
nally computationally tractable. In the following, we compare this
line of research to the state-of-the-art heuristic method in 3D print-
ing [SRB∗19].

The experimental setup of this comparison differs from the ren-
dering setup usually employed in scattering compensation [ESZ∗17,
SRB∗19]. We inherit this setup from the published code of [ND-
SRJ20] which is based on an older version of Mitsuba2. After
consultation with the authors, we were advised to replicate their
setup in our pipeline for the sake of this comparison. We consider
the construction of a genuine 3D printing optimization setup using
Radiative Backpropagation (RB) outside the scope of this paper and
leave it for future work.

Table 4: Properties of the rendering setup used for RB and the heuris-
tic refinement whenever it is compared to RB. The original setup
employed in previous 3D printing work [SRB∗19] is shown (but not
used).

Property [NDSRJ20] [SRB∗19]

Illumination diffuse white diffuse white
Media Modeling homogeneous heterogeneous
Albedo varying varying (discrete)
Density constant varying (discrete)
Phase function isotropic HG (g = 0.4)
Halftoning no yes

Camera perspective
surface voxels
aligned with surface normal

We list the differences between the two approaches in Table 4.
The most salient differences are the modeling, the phase function
and the lack of material discretization.

Discretization Halftoning discretizes printer materials to ensure
the ability to fabricate the object’s appearance. The method of
[SRB∗19] includes halftoning in every iteration, to predict the ap-
pearance of the actual printer material arrangement. Including a dis-
cretization step would also be possible in a differentiable framework,
however it would introduce another source of discontinuity that
might need special treatment. Leaving physical printability aside,
one can still compare the methods for virtual objects only. There-
fore, a continuous volume albedo is being reconstructed to match a
target surface albedo.

Density For the density of the medium, one can assume a constant
that lies somewhere in the order of the discrete materials. Upon
review of the published code, we found that figures in [NDSRJ20]
were produced with a considerably high density of 75 mm−1. That
helps obtaining a near perfect match towards the target images and
the lack of visible lateral scattering. In the comparisons here, we
test a range of different, lower densities ranging from 1.125 mm−1

to 9 mm−1.

Phase function The difference in phase function is particularly se-
vere for the appearance of translucent media [GXZ∗13]. Images
with an isotropic phase function exhibit less lateral scattering than

a forward scattering phase function. Inspired by similarity theory,
we reduced the density for some experiments to regain some level
of unwanted lateral scattering. This is important for the compari-
son, as it is a very important reason for the existence of scattering
compensation in 3D printing.

Modeling The way a medium is modeled in a renderer influences
mostly the efficiency of the estimator. In the setup of [NDSRJ20],
the medium is modeled as a homogeneous medium with constant
density and spatially-varying albedo. This allows for closed-form
free-flight sampling while still having a textured appearance. Lim-
ited by the heuristic pipeline implementation [SRB∗19], which is
based on [Jak10], we can only model the medium as fully heteroge-
neous but with constant density values.

The main implication of that is a limited comparability of tim-
ings between the two implementations. Besides the advantage of
Mitsuba2 being a more modern renderer executed on GPU, it thus
also benefits from more efficient volume sampling. We refrained
from artificially slowing down Mitsuba2 by using a heterogeneous
medium to keep a high experimentation speed. From experiments in
Table 3 we can conclude the difference in speed. In the main paper,
we thus only refer to iteration counts and omit the comparison of
wall-clock timings of individual iterations. Theoretically both meth-
ods could be driven by the same MC implementation alleviating the
necessity for absolute time measurements.

Scene Geometry The slab is modeled to consist of 256×256×64
voxels at 300 dpi resolution. This makes it≈ 21.6mm×21.6mm×
5.4mm in size. The illumination is a constant white environment.

Optimization Procedure The differentiable rendering setup uses
the Adam optimization algorithm [KB14] with default settings to
update the parameters. The sample count is kept constant through-
out the optimization for both forward and backward pass to 128 spp
except for the last iteration which is set to 512 spp. We are aware
of obvious speed-up techniques such as lowered sample count, dy-
namic sample count and learning rate adjustments but chose not to
apply them here for a fair comparison on best possible quality. As
we argue in Section 8, these techniques alone would not have influ-
enced the outcome of the speed considerations of this comparison.

The heuristic setup predicts with 128 spp or 512 spp depending
on the experiment whereas the last iteration is always 512 spp.

6. Initializations

With gradient descent being a local optimization method, the initial
condition influences the trajectory of the optimization. We tested
various configurations to initialize the voxels including constant
colors, noise, extrusions, and the heuristic solution. Figure 3 depicts
the two target images.

6.1. Van Gogh

Each row in Figure 9 lists the tested initializations whereas columns
depict different iterations throughout the optimization from 1 to
300. A cutout on the trees highlights the contrast towards the sky
and manifestation of details within the trees’ texture. The difference
images underline the spatial distribution of error over the image.

submitted to EUROGRAPHICS 2021.



Rittig, Sumin et al. / Supplemental:Neural Acceleration of Scattering-Aware Color 3D Printing 5

(a) Van Gogh

MSE

(b) High-frequency pattern

MSE

0

2

4

6

8

10

CI
E 

dE
 2

00
0

Figure 3: Targets (a) and (b) used in the study. Insets on the top
left denote MSE values. The CIE dE 2000 difference images are
colored using the inferno colormap (lower/darker is better).

Convergence Overall we observe a diversity of convergence speed
between the initializations. That is visible from the graphs in Fig-
ure 4 and visually in the images of individual iterations. BLACK is
expectably bad for initialization as no albedo gradients will have a
greater magnitude than zero. WHITE is the slowest of all. A medium
GREY seems to be better for convergence and final result quality.
NOISE starts only slightly slower, but converges to equal high qual-
ity. Extrusions of 1 LAYER and 2 LAYER are good initializations
for convergence but lack slight crispness after 300 iterations. Fi-
nally, a pre-converged solution (HEURISTIC) gives the lowest over-
all starting error and only changes slightly in MSE while staying
perceptually constant. We attribute this slight change in MSE par-
tially to the mismatch in camera setup but mostly to the different
error metric.

Final quality As for final image quality after 300 iterations, GREY,
NOISE, and HEURISTIC deliver the most details. 2 LAYER shows
crisper details than 1 LAYER and WHITE looks overall washed
out. The perceptual quality differences are not reflected in the MSE
error values in the insets. We suspect the quality might reach the
same level with all initializations, but would require more iterations
depending on convergence speed.
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Van Gogh Initializations
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Figure 4: Convergence plot of different initializations for Radiative
Backpropagation (RB) [NDSRJ20] on the Van Gogh target. The
HEURISTIC initialization is the result of a 512 spp heuristic refine-
ment [SRB∗19] presented in Figure 11.

Volumetric Arrangement The final volumetric arrangement of the
albedo values in the last column shows the most saliency between
the initialization methods. Throughout, the topmost layer looks like
an unsharp-masked version of the target image. Layers below are
less sharp but exhibit a form of morphological dilation of bright
(white) regions. In even deeper layers this widening of white tapers
off into the untouched initial values. This visualizes the shape of
a subsurface scattering kernel (with orthogonal incidence) that one
can imagine in form of a carrot.

The high albedo of WHITE allows paths with high contribution to
reach deep into the medium. Thus, the optimizer initially distributes
improvement energy over more voxels into deep layers. When more
absorption is accumulated on the surface, these deeper layers loose
influence. This is mirrored in the slower convergence speed of the
WHITE initialization.

GREY initially has a constant absorption everywhere, which re-
sults in a more compressed absorption towards the surface. This is
visible from the maximum reach of white material in depth as well
as from the start of widening from the top. Maximum absorption is
not accumulated in the top-most layer but spread over the top two
to three.

NOISE is even more compressed than GREY but still does not
accumulate the peak absorption in a single layer. In 1 LAYER the
topmost layer is very absorbing and focused while the other layers
behave like WHITE. 2 LAYER shows identical tendencies but with
the absorption being less compressed and spread over two layers.

As the heuristic approach [ESZ∗17,SRB∗19] is designed to maxi-
mize absorption close to the surface it generally does not reach very
deep. Here, only five to six layers are covered considerably and
deeper layers exhibit more sparse noise. RB performs only minor
updates to the volume over the course of 300 iterations.

6.2. High-frequency Pattern

As the above color optimization is essentially three independent per-
channel optimizations we isolate contrast perception from color per-
ception in a black and white target. We constructed the target visible
in Figure 3 (b) to contain multiple spatial frequencies and feature
larger constant areas, as well as areas with fine details. Again, Fig-
ure 10 shows different initializations per row and the convergence
graphs for this target are visible in Figure 5. We observe overall
very similar behavior as in Section 6.1 and will describe only spe-
cial considerations here.

On first glance, the EXTRUSION initialization already produces
a perfectly acceptable result on the first iteration. The optimizer
however tries to reduce the lateral scattering into the bright white
values first. On these kind of hard edges, it is a tradeoff between
light scattering in dark or the other way round. Here, the optimizer is
very on-sided in favor of light values leaving strong lateral scattering
into the black parts. This can be traced back to the used metric.

In terms of metric values, the convergence graph also shows a
preference for bright initializations (WHITE, 1 LAYER, 2 LAYER).

With the metric not focusing on dark areas it is also harder to
reproduce a true black color. In this comparison it is only achieved,
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Figure 5: Convergence plot of different initializations for Radiative
Backpropagation (RB) [NDSRJ20] on high-frequency target. The
HEURISTIC initialization is the result of a 512 spp heuristic refine-
ment [SRB∗19] presented in Figure 12.

where the EXTRUSION and HEURISTIC initializations already had
perfect black albedo.

All slices in Figure 10 show aliasing artifacts on higher frequen-
cies from misalignment of camera pixels and volume voxels due to
the perspective camera.

7. Heuristic Comparison

Explicit comparison between the two methods is visualized in
Figs. 11 and 12. We take the most interesting initializations for
Radiative Backpropagation (RB) and show them alongside two op-
timization runs of the heuristic approach. The RB results are thus
not explicitly described again and we focus instead on the differ-
ences to the heuristic run.

7.1. Van Gogh

Judging from the difference images, the GREY and NOISE runs
achieve an equal fidelity of tree details as the heuristic approach with
512 spp. Edge sharpness is slightly better for the heuristic approach,
which also shows in the hard edges of the clouds.

The heuristic approach run on a lower sample-count does not
manifest visible artifacts into the medium that would show up when
re-rendered with equal spp.

When comparing the two methods on an equal iteration number
one can easily spot the difference in convergence behavior. After
only 23 iterations, RB exhibits a very schematic appearance. Con-
siderably more iterations even in flat regions of the convergence
graph (Figure 6) are required to develop fine texture details.

7.2. High-frequency Pattern

For the high-frequency target the comparison is shown in Figure 12.
Here, the heuristic solution produces a much sharper solution than
RB. Contrast is preserved even for very high frequencies. For that,
it occupies more layers than any solution of RB and propagates
absorption as deep as necessary to achieve a perfect black on the
surface. Continuing the heuristic solution (e) with RB (g) intro-
duces more white scattering into the black parts and decreases edge
sharpness.

0 50 100 150 200 250 300

Iteration

10−3

10−2

10−1

M
S
E

Van Gogh Convergence

RB [Grey]

RB [Noise]

RB [1 layer]

Heuristic 512 spp [1 layer]

Heuristic 128 spp [1 layer]

RB [Heuristic]

Figure 6: Convergence plot for comparison between Radiative Back-
propagation (RB) [NDSRJ20] and heuristic refinement [SRB∗19]
presented in Figure 11 on Van Gogh target image.The heuristic solu-
tion requires one order of magnitude less iterations than stochastic
gradient descent (SGD).

In terms of convergence, the plot in Figure 7 again shows less
required iterations for the heuristic. This plot also visualizes how
perceptual quality and error metric values are clearly not aligned.
The minimum lies in very early iterations where most of the image
is bright and the pattern is hardly perceptible. After that, lateral
scattering increases the error, but the contrast of the pattern increases
which is perceptually preferable.
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RB [Grey]

RB [Noise]

RB [Extrusion]

RB [1 layer]
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Heuristic 128 spp [1 layer]
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Figure 7: Convergence plot for comparison between Radiative Back-
propagation (RB) [NDSRJ20] and heuristic refinement [SRB∗19]
presented in Figure 12 on high-frequency target.The heuristic solu-
tion requires one order of magnitude less iterations than SGD. The
increase in error is from black material scattering into white.

8. Discussion

Our results show, that the performance gap with the more special-
ized, heuristic approach is one order of magnitude. As we note in
Section 5, differentiable rendering can benefit from very low sample-
counts to improve the absolute speed. A fine-tuning of the SGD
parameters might also yield a performance boost as well. Overall,
further work is necessary to investigate the convergence behavior
of differentiable rendering.

Metric This comparison inherited the simple L2 norm optimiza-
tion from the original code publication [NDSRJ20]. As it is obvious
from numerous results (eg. Figure 9 (d) vs (e)), a lower MSE does
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not necessarily correlate with perceptual preferences. We identify
the choice of metric to be important to reach higher quality. Espe-
cially for 3D surfaces, a new metric with lateral support is necessary.
The heuristic approach has some perceptual aspects build-in as it
tries to maximize local contrast.

Differentiable rendering can be more general in terms of illumi-
nation. Where the heuristic is designed for diffuse illumination, the
more general tool can incorporate arbitrary scene complexity if a
specific application requires that.
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DIDYK P., BICKEL B., KŘIVÁNEK J., MYSZKOWSKI K., WEYRICH
T.: Geometry-Aware Scattering Compensation for 3D Printing. ACM
Transactions on Graphics (Proc. SIGGRAPH) 38, 4 (July 2019), 111:1–
111:14. doi:10.1145/3306346.3322992. 3, 4, 5, 6, 11, 12

[Wa20] WALKOM G., ABHINAVVS: Mitsuba2 github issues, Apr.
2020. Accessed 2020-10-04. URL: https://github.com/
mitsuba-renderer/mitsuba2/issues/72. 3

[ZWZ∗19] ZHANG C., WU L., ZHENG C., GKIOULEKAS I., RA-
MAMOORTHI R., ZHAO S.: A differential theory of radiative trans-
fer. ACM Transactions on Graphics (Proc. SIGGRAPH Asia) 38, 6 (Nov.
2019), 227:1–227:16. doi:10.1145/3355089.3356522. 3

submitted to EUROGRAPHICS 2021.



8 Rittig, Sumin et al. / Supplemental:Neural Acceleration of Scattering-Aware Color 3D Printing

Figure 8: Comparison of prediction methods inside a refinement loop: (a) target models (b) using baseline RPNN-based predictions, and (c)
our proposed solution using RPNN-based predictions.
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Figure 9: Comparing Radiative Backpropagation (RB) [NDSRJ20] over different volume initializations (a-g) on density 4.5 mm−1 and Van Gogh target image. Here, HEURISTICis
used as an initialization and further optimized with RB. Formalities are explained in Figure 3. Beware, that error values and images for the last iterations are computed with 4×
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Figure 10: Comparing Radiative Backpropagation (RB) [NDSRJ20] over different volume initializations (a-g) on density 4.5 mm−1 and a high-frequency pattern. Here,
HEURISTICis used as an initialization and further optimized with RB. Formalities are explained in Figure 3. Beware, that error values and images for the last iterations are
computed with 4× higher (512) spp for comparability. CIE dE 2000: 0 10
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Figure 11: Comparing Radiative Backpropagation (RB) [NDSRJ20] (a-c,f) and a heuristic approach [SRB∗19] (d,e) over different volume initializations and sample count for
density 4.5 mm−1 and Van Gogh target image. In the last row, HEURISTICis used as an initialization and further optimized with RB. Formalities are explained in Figure 3. Beware,
that error values and images for the last iterations are computed with 4× higher (512) spp for comparability. CIE dE 2000: 0 10
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Figure 12: Comparing Radiative Backpropagation (RB) [NDSRJ20] (a-d,g) and a heuristic approach [SRB∗19] (e,f) over different volume initializations and sample count for
density 4.5 mm−1 and a high-frequency pattern. In the last row, HEURISTICis used as an initialization and further optimized with RB. Formalities are explained in Figure 3.
Beware, that error values and images for the last iterations are computed with 4× higher (512) spp for comparability. CIE dE 2000: 0 10
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