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Figure 1: Feature descriptors based on surface normal characteristics can capture a variety of physical characteristics such as brush strokes,
string impressions, and erosion, that are used by archaeologists when assembling fresco fragments. Combining these with more traditional
color-based features and 3D features using classification trees yields significantly improved matching performance.

Abstract

We present a multiple-feature approach for determining matches
between small fragments of archaeological artifacts such as
Bronze-Age and Roman frescoes. In contrast with traditional 2D
and 3D shape matching approaches, we introduce a set of feature
descriptors that are based on not only color and shape, but also
normal maps. These are easy to acquire and combine high data
quality with discriminability and robustness to some types of
deterioration. Our feature descriptors range from general-purpose
to domain-specific, and are quick to compute and match. We
have tested our system on three datasets of fresco fragments,
demonstrating that multi-cue matching using different subsets
of features leads to different tradeoffs between efficiency and
effectiveness. In particular, we show that normal-based features
are more effective than color-based ones at similar computational
complexity, and that 3D features are more discriminative than ones
based on 2D or normals, but at higher computational cost. We
also demonstrate how machine learning techniques can be used to
effectively combine our new features with traditional ones. Our
results show good retrieval performance, significantly improving
upon the match prediction rate of state-of-the-art 3D matching
algorithms, and are expected to extend to general matching
problems in applications such as texture synthesis and forensics.

1 Introduction

Advancements in low-cost, high-volume acquisition systems have
made computer-assisted reconstruction of artifacts from small frag-
ments practical. This problem is of particular interest to the field
of archaeology, in which the reconstruction of artifacts such as
shattered wall paintings reveals information about the history and
culture of ancient civilizations. Historically, the process of recon-
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structing these wall paintings has been manual, occupying a major
proportion of the human effort at excavation sites. As a result,
wall painting reassembly is not even attempted at countless sites
around the world, leading to a significant opportunity to advance
our knowledge of ancient societies by improving the practicality of
reconstruction.

Several 2D and 3D computer-aided matching approaches have been
explored and have proven successful in some domains. However,
current matching algorithms have difficulty when matching artifacts
that have deteriorated over many years. For example, they may
consider features such as color, which frequently have changed over
time even among neighboring fragments. Alternatively, they may
operate exclusively on 3D geometry, which may not only have de-
teriorated, but is also challenging to acquire with the same fidelity
and resolution as color images.

We address the problem of reconstruction by considering multi-
ple cues based on color, shape, and—most interestingly—normal
maps. The latter is a new source of information that has not been
used for matching in previous work, and we argue that it combines
high data quality and resolution with high discriminability and ro-
bustness with respect to certain types of deterioration. As has been
recently demonstrated [Brown et al. 2008; Pintus et al. 2009], it is
practical to use flatbed scanners to obtain normal maps of mostly-
flat objects with 600 or 1200 dpi resolution. These normal maps
reveal salient surface characteristics including string impressions,
brush strokes, surface roughness, and fine cracks.

Our system begins with scanned images and normals of a collection
of fragments, and computes a set of feature descriptors. Each de-
scriptor may be computed over an entire fragment or over small
patches sampled around the outer contour of the fragment: the
tradeoff of sampling patches is greater discriminability for greater
computation time. Descriptors range from general-purpose (such
as variance in the normal map) to ones designed specifically for
the domain of fresco fragment matching, and motivated by visual
cues used by archaeologists for reassembly (such as brush stroke
direction). They are designed to capture characteristics like shape,
surface decoration, surface texture, and deterioration (Figure 1).

We use similarity of these descriptors to suggest matches, and eval-
uate their performance on three different wall-paintings. The first
is a geometric scene containing spirals and large areas of constant
color, from a late-bronze-age Aegean civilization at Akrotiri, on
the island of Thera (Santorini). The second is from a Roman villa
at Kerkrade, The Netherlands, and is especially distinctive because
of the strong brush marks visible both in the color and the surface
relief. The third is a synthetic fresco, professionally created and



shattered, for which a ground-truth reconstruction is available.

We perform a cross-validation analysis on databases of dozens
to hundreds of fragments, drawn from the three different wall-
paintings. Our results demonstrate the discriminative power of our
collection of features, and suggest that matching performance is
improved by the use of normal maps, in addition to features based
on more conventional data sources such as color, thickness, and
exterior contour shape. Moreover, we observe that the performance
of individual features varies from dataset to dataset, suggesting a
future extension to online learning.

Overall, the paper makes the following contributions:

• The introduction of a new type of input, normal maps, for
matching small fragments of artifacts. We argue that normal
maps are easy to acquire with higher resolution than 3D mod-
els, and are more robust to deterioration and discoloration than
color.

• A set of easily computable descriptors, of both general purpose
and domain specific types, that are effective for matching.

• Analysis and evaluation methods that demonstrate how well our
features perform over state-of-the-art 3D match algorithms.

• A matching framework that is easily extendable to more gener-
alized matching problems used in applications such as texture
synthesis and forensics.

2 Previous Work

2D Matching: Traditional matching algorithms use 2D con-
tours [Kong and Kimia 2001; Leitão and Stolfi 2002; Papaodysseus
et al. 2002] as well as image-space features including color and tex-
ture [Fornasier and Toniolo 2005; Sağiroğlu and Erçil 2006]. How-
ever, these solutions are often sensitive to erosion and discoloration,
a significant issue for fragments that have spent thousands of years
exposed to natural elements. Moreover, they do not consider the
wealth of 3D information available in geometric representations.
Such cues are particularly important in our domain where impres-
sions on the fragment surface provide strong matching cues.

3DMatching: Other approaches for assembling fractured objects
incorporate full 3D descriptions. For example, Huang et al. [2006]
reassemble solid objects by first identifying fractured regions, then
generating clusters of feature patches for alignment-based match-
ing. Although these feature clusters effectively describe the local
geometry of the fracture surface, the algorithm does not consider
other physical attributes of the dataset, and is burdened by the
complexity of a full 3D matcher. Brown et al. [2008] exploits
the orientation constraints of flat fragments to achieve a simple,
fast matcher based on edge geometry. This matcher resamples the
fragments edges in a regular grid structure, then exhaustively tests
every possible alignment of a pair of fragments in a few seconds,
in a correlation-like manner. This approach takes advantage of
high resolution geometry to find precise alignments, and mirrors
the common technique of finding matching fragments by testing
for pairs that physically “lock” together. On the other hand, frag-
ment edges are subject to erosion, and the brute-force nature of the
algorithm means there is no early rejection for non-matching pairs.

Our approach retains the efficiency of a special-purpose matcher for
flat objects, but focuses on fine surface details rather than edge in-
formation. It is complementary to existing geometry based match-
ers in two important ways. First, it matches features on the exter-
nal surface of fragments rather than fitting fractured faces to each
other. Second, it relies on high resolution normals captured with
a flatbed scanner that could not be acquired reliably with current
stereo-based scanners or fed into an alignment algorithm.

Reassembling Artifacts: Several computer-aided systems have
been designed specifically for reassembling broken objects. One

notable example is the Forma Urbis Romae project [Koller et al.
2006], where analysis of incision points and markings is used to
match sparse data. While some aspects of these heuristics are
of broader applicability (for example, in lining up fragments with
string impressions), they are largely tuned to the specific needs of
the Forma Urbis Romae. Another common application in the field
of archaeology is the reassembly of broken pottery [Willis 2004;
Karasik and Smilansky 2007]. Just as we take advantage of proper-
ties of fresco fragments to obtain an effective, efficient matcher,
these algorithms rely on finding the axis of rotation and profile
curve common to pottery.

Our approach improves upon these examples because we interpret
observed qualities of our domain as a set of functions that are easy
to compute, optimizing our system to use a combination of the most
discriminative criteria for matching. Although we incorporate some
3D quantities, such as thickness, we maintain the ease and simplic-
ity of a 2D system by only computing in image space.

3 Overview

In this paper, we focus on obtaining feature descriptors from a
database of scanned patches of objects, focusing on an archaeolog-
ical fragment matching scenario. We describe our feature descrip-
tors, match classification strategies, and the datasets on which we
operate. We use three forms of data: color maps acquired using a
high-resolution (600 dpi) 2D scanner, normal maps obtained from
multiple scans using a variant of shape from shading [Brown et al.
2008], and 3D meshes from a laser-triangulation range scanner. We
use these data types because they can be obtained in situ, at an
archaeological excavation or in the context of other digitization ef-
forts, with high fidelity, low cost, and ease of acquisition.

3.1 Feature Descriptor Generation

Figure 2 presents a conceptual overview of our feature descrip-
tor pipeline. Because practical datasets may contain thousands
of fragments, we focus on designing a matching pipeline capable
of scaling to these data sizes. Indeed, a brute-force solution that
tested every possible alignment of every possible pair of fragments
would quickly become infeasible, requiring perhaps 1010 to 1012

comparisons (a few thousand fragments times a few hundred orien-
tations, squared). To overcome this growth we employ a sequence
of matching stages, ranging from ones that can quickly reject a large
number of implausible candidates to ones that precisely check in-
dividual matches. A key observation is that the early stages should
require computation that grows linearly with the number of frag-
ments, rather than quadratically.

We thus consider three possible classes of features. The first in-

Figure 2: An overview of feature generation. We extract a variety of
feature descriptors from high-resolution color scans, normal maps,
and 3D models of each fragment. Descriptors may be extracted at
the fragment level, patch level, or for a specific candidate match.
Although we can use machine learning to match all features si-
multaneously (Section 7), it is advantageous to first select possible
matches with per-fragment and per-patch features, then compute
the more expensive per-match features only for these possibilities.



cludes per-fragment features: those that are computed (once) for
each fragment in our database. Fragments that differ greatly in
the computed descriptors are assumed to have a low probability
of matching, hence generation of plausible matching pairs of frag-
ments could be accelerated with a fast clustering or indexing tech-
nique (in this paper we focus on demonstrating the matching accu-
racy of the descriptors, rather than evaluating their efficiency).

The second class of features we consider are per-patch features.
These are computed not over entire fragments, but over small re-
gions sampled around the boundary. Because these features con-
sider more localized properties, we expect that they will be more
discriminative of true matches. On the other hand, they also re-
quire more computation than the per-fragment features, since they
must be evaluated at dozens to hundreds of locations around the
perimeter of a fragment. Nevertheless, the descriptors are precom-
puted and cached, once per fragment, adding only a few seconds
to the preprocessing time. The patches we use are circular and are
sampled from the original 600 dpi images, every 5 mm along the
perimeter of the fragment. For most features, we use patches 10 mm
in diameter, and offset them 8 mm inward from the outside contour.
This ensures that the resulting features are not corrupted by the very
edges of the fragments, which are frequently broken off, eroded, or
shadowed. For a few features we also use larger patches—20 mm
in diameter— to estimate properties more accurately and robustly,
and for the area-based curvature descriptor the patches are centered
on the contour instead of being offset inward. These variants are
discussed below, in the descriptions of individual features.

Finally, we employ per-match features, which evaluate the plau-
sibility of a candidate pair of fragments in a particular alignment.
This stage is the most expensive, since it involves computing fea-
tures per pair of fragments, and precludes the use of fast clustering
or indexing methods. On the other hand, such descriptors (e.g., av-
erage distance between the fragments) can be more discriminative.

3.2 Match Classification

There are many types of machine learning tasks that can effectively
use vectors of features: indexing, match scoring, classification, etc.
As mentioned above, in the context of a large-scale fragment match-
ing application we anticipate two main uses. First, in the early
stages of matching the goal is to quickly determine large sets of
potentially-matching pairs of fragments. In the ideal case, this stage
would run in O(n) time for n fragments, in contrast to the naive
O(n2) strategy of checking every potential pair. Therefore, we an-
ticipate that indexing and clustering methods are relevant, implying
that we would like to determine which feature vectors are far apart,
and which are nearby.

Later in the pipeline, the relevant task becomes separating matches
from non-matches as effectively as possible. This may operate ei-
ther via classification—predicting whether a proposed pair is likely
to be a match or nonmatch—or via probabilistic regression—
ordering proposed pairs from most to least likely. Either way, the
most likely matches will, in the end, be presented to the user for
ground-truth verification, meaning that all of the above strategies
are amenable to incorporation in an “online learning” system that
incrementally adjusts the importance of different features to adapt
to the particular characteristics of each new database.

We therefore have four tasks— indexing, match classification, re-
gression, and online adaptation to per-database feature impor-
tance— that all stem from the same set of features. In this paper we
present results for match classification experiments, since it is likely
that good performance on this task will lead directly to good per-
formance on the others. We adopt an existing technique (decision
trees) for producing trained classifiers, and explore classification
performance using a cross-validation methodology. In most cases,

the trees are simply trained on the absolute value of the difference
between feature descriptor values for a pair, but a few cases require
a more complex computation to convert the values of feature de-
scriptors into a value likely to be predictive of a match. We also
examine the typical variation in the different features.

3.3 Datasets

We evaluate our features using scanned frescoes from archaeologi-
cal excavations at Akrotiri and Kerkrade, as well as a modern-day
“synthetic” fresco data set.

Akrotiri: The Theran frescos were discovered on the island of
Thera (modern-day Santorini), at the site of Akrotiri. Around 1650
B.C. the late-Bronze-Age Aegean civilization that occupied the is-
land was destroyed by a volcanic eruption. The most important
finds at Akrotiri are the extensive wall paintings, which, although
broken into small fragments, have been well preserved by the vol-
cano’s ash. In fact, the completeness of these wall paintings is
unique in the ancient Mediterranean. However, the Theran wall
paintings are known for their large fields of white or other solid
colors, making manual reassembly especially difficult. Another
distinguishing feature is the presence of surface impressions left
by strings that were used as guides and placed in the wet plaster
by artists. In this paper, we work with a dataset of 1200 fragments
taken from a fresco with spiral motifs.

Kerkrade: The Kerkrade frescoes originate from a second-
century Roman villa in Kerkrade, The Netherlands, near present-
day Heerlen and Maastricht. They belong to the larger set of quality
paintings from the Roman period found in the Netherlands, and are
also a part of a select few that depict large-scale human figures.
The Kerkrade fragments differ from those at Akrotri in two impor-
tant ways: they are more eroded, and have visible brush strokes
and texture resulting from the smoothing out of the plaster. We
therefore, expect a different subset of the features to be important
for matching. Our test set consists of 100 fragments.

Synthetic: This synthetic fresco, described by Brown et al. [2008],
was created by conservators in a style similar to the one used at
Akrotiri. The finished fresco was then broken into pieces to create
fragments similar to the fragments found at that site. This fresco
is characterized by large areas of white with smaller regions of
color. Both string impressions and brush strokes are present on the
fragment surfaces. Our ground truth set consists of 127 fragments.

4 Feature Descriptors

Our feature descriptors range from “generic” ones, found in
fragment-matching or puzzle-assembly systems, to domain-
specific. The latter, while still general, were inspired by visual
cues used by conservators and archaeologists to perform manual
reassembly of artifacts (such as frescos and pottery). These visual
cues are time-tested and effective. The novelty of our normal-based
features lies in their use of additional information (fine surface
details) to detect these cues when they are not readily apparent.

As explained in Section 3, our descriptors are classified according
to their type (per-fragment, per-patch, per-match) and the data from
which they are computed (colors, normals, 3D). In this section, we
focus our attention on normal-based features. We claim that such
features combine high classification performance with low acquisi-
tion cost and high matching efficiency (i.e., the features are largely
per-fragment and per-patch, rather than per-match). These claims
will be evaluated in subsequent sections. For completeness, we also
describe the more “traditional” features used by our system.



Average Color, Saturation, and Variance

Type: Per-Fragment and Per-Patch Data: Color

We begin with features traditionally used in image-based match-
ing systems, such as the mean color (computed separately for each
color channel) and color variance, both of which may be computed
both per-fragment and per-patch. In addition, we use color satu-
ration as a feature. This was inspired by the observation that two
adjacent fragments will often exhibit a similar amount of deteriora-
tion in their pigments: either they are both faded, or both retain their
original colors. We include this descriptor in the hope that it may
combine with other features to boost classification performance.

Contour Curvature

Type: Per-Patch Data: Color

The curvature of the fragment’s outline provides a per-patch de-
scriptor that groups fragments of similar external shape, and is often
used for (2D) puzzle reconstruction. (Similar patches will have
curvature of similar magnitude but opposite sign.) We have ex-
perimented with two alternative descriptors for 2D curvature along
the fragment contour. An area-based descriptor finds the fraction
of the fragment covered by a circular patch centered on the contour:

CurvatureArea =
Area(Fragment ∩ Patch)

Area(Patch)
. (1)

As shown by Manay et al. [2004], this quantity is just a function
of curvature, in the limit of small patch size: values of 0, 1/2, and 1
correspond to curvatures of +∞, 0, and −∞, respectively.

The second curvature descriptor only looks locally at three adjacent
points A, B, andC on the contour:

CurvatureContour = 2
∠(C − B) − ∠(B− A)

‖C − B‖ + ‖B− A‖
, (2)

where the numerator is the angle between the segments AB and
BC, and the denominator is their total length. This discrete ap-
proximation to curvature is accurate for low-curvature regions, as
is generally the case in practice. The points A, B, and C are picked
at multiple scales: 2.5 mm, 5 mm, 8 mm, 10 mm, and 15 mm. Each
one yields a separate descriptor, providing even more information
about the contour shape to be used in matching.

Average Normal and Variance

Type: Per-Fragment and Per-Patch Data: Normal

Many datasets that we examined exhibit significant variation in sur-
face roughness from location to location: some regions are smooth
while others are rough because of visible brush strokes, weathering,
or the use of a different type of plaster. To characterize this, we look
at the distribution of normals on the fragment or patch. However,
we cannot simply consider the normal vectors themselves: one of
their components is not known, in global coordinates, since the final
orientation of the fragment is unknown. For this reason, we form
a rotation-invariant quantity: the z component of the normals (i.e.,
the component perpendicular to the fragment’s “flat” surface). We
use the mean and variance of these z components as features.

Color/Normal Variation

Type: Per-Fragment and Per-Patch Data: Color and Normal

This descriptor captures the effect of correlated variation in color
and normals, as frequently occurs when there are visible brush
strokes or string impressions that were used as guides for painting.
We begin by stacking the colors and normal z components for pixels
in a fragment or patch into an n× 4 matrix, then perform a Singular

Figure 3: (a) Fragment with a visible string impression. We visual-
ize the normal-discontinuity and dominant-orientation descriptors.
(b) The dominant-orientation descriptor detects the orientation of
the string impression, allowing it to be matched to an impression
on an adjoining fragment. Visualized are the mean component of
the normal, the power spectrum, and the detected dominant orien-
tation. (c-e) Normal-z histograms used by the normal-discontinuity
descriptors. Histogram (c) has a long tail, while the smooth patch
in (e) results in a histogram clustered around the origin. We inset
patches from the edge to avoid incorrect long-tailed distributions,
as shown in (d). We also experimented with larger patch sizes (a).
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We use the sum of the σi as a descriptor, yielding a compact,
rotation-invariant, yet discriminative description of the nature of
color and normal variation on the surface.

Normal Discontinuity

Type: Per-Fragment and Per-Patch Data: Normal

Many frescoes contain distinctive shapes on the front surface. For
example, artists occasionally pressed a guide string on the wet
plaster during fresco construction to provide an outline for straight
bands of color. We posit that such features are strong matching cues
and design descriptors that distinguish between relatively smooth
patches (possibly with some noise in the normals due to erosion)
and those with large discontinuities in the surface orientation.

Our analysis begins by computing a histogram of the differences
{Di j} = {‖ni,z − n j,z‖} between neighboring normals in a patch.
(We use only the z components of the normal vectors because they
are invariant to rotation in the plane.) We then compute a number
of statistical measures on this distribution, to determine the degree
to which it either is strongly peaked around zero or contains long
“tails” of high curvature. We have experimented with four measures
to characterize the degree to which the normal difference distribu-
tion exhibits long tails:

1. The ratio between the normal differences’ 80th and 50th per-
centiles;

2. The fraction of discontinuity values greater than a threshold
(0.46), determined experimentally by looking at fragments con-
taining string impressions;



Normal Map Ωn = argmaxω 6=0 ‖Fn(ω)‖2 Ωθ

Figure 4: Brush Stroke Detection. Finding the dominant orienta-
tion on a sample taken from Kerkrade. We determine the strength,
and direction of brush strokes by examining the frequency, ampli-
tude and orientation of the dominant frequency (excluding the dc) in
the power spectrum. Left: normal map. Middle: power spectrum.
Right: red lines visualize the orientation of this dominant peak.

3. The third moment of the distribution; and

4. The fourth moment of the distribution.

Figure 3, (c) and (e), shows normal discontinuity distributions for
patches with and without string impressions. The presence of
strings produces a distribution with significantly more large values.

Dominant Orientation

Type: Per-Fragment and Per-Patch Data: Normal

This feature detects regular surface patterns, such as the brush
strokes found on some fragments. We were inspired by examples
like the ones in Figure 9, which illustrates the variation in strokes
left by both paintbrushes and tools for smoothing out the underlying
plaster. We expect that the amplitude and frequency of these brush
strokes extracted from normal maps, will strongly group them ac-
cording to local variation in their characteristics. In addition, the
orientation of these brush strokes must be continuous across frac-
tures, producing a strong matching cue that essentially eliminates
the search over orientation in possible matching fragments.

First we smooth the z-normal image of the fragment or patch, apply
a Hanning window, and then find its 2D Fourier transform Fn(ω).
We then search for the frequency with the greatest energy. Because
the patches are smooth, the highest-energy peak is usually the DC
component, and low frequencies are generally stronger than high
ones. For this reason, we apply a threshold to the frequency:

NormalDominantFrequency = arg max
ω>ωmin

‖Fn(ω)‖2 (4)

where: ωmin = 3 pixels. In addition to using the frequency and
amplitude of this peak as features, we also use its orientation. To
make this invariant to rotation, we compute the difference between
the angle of the dominant peak and the normal to the fragment
contour. In other words, we store the angle between the dominant
directional variation (e.g. brush strokes) and the fragment edge—
this quantity is expected to be the same for a matching fragment.
Figure 4 demonstrates results of this process on a fragment from the
Kerkrade dataset (see Section 3.3) containing strong brush strokes.

Cracking and Erosion

Type: Per-Fragment and Per-Patch Data: Color and Normal

Erosion of a plaster fresco frequently results in small pits in the
surface, while the destruction of the original wall-painting produces
an irregular pattern of cracks. The erosion descriptor uses mor-
phological operators to quantify the degree of deterioration on the
surface. Specifically, we extend versions of the black and white
top-hat transforms [Serra 1983]:

Twhite( f , κ) = f − f ◦ κ

Tblack( f , κ) = f • κ − f ,
(5)

where ◦ and • are image-morphological open and close operators
and κ is a structuring element.

Unlike previous applications, we improve discriminability by com-
bining color and normals in the analysis. As shown in Figure 5, for
patch-level erosion detection, we take the intersection of peaks in
the threshholded black top-hat transform of the color map and the
threshholded white top-hat transform of the normal map:

Erosion(Ic, In, κ) = T ′black(Ic, κ) ∩ T ′white(In, κ) (6)

where Ic is a grayscale version of the color buffer, In is the z com-
ponent of the surface normal, and T ′ are the thresholded top-hat
transforms. We found that an intensity threshold of 0.3 works well.
For the structuring element κ, we use a circle (with a 3 pixel radius)
to ensure our results are rotation invariant across fragments. We
record two scores: the total number of pixels over all peaks (nor-
malized by the number of visible pixels) and the average number of
pixels per connected component. The first value records the density
while the latter suggests the average size of each element. Figure 8
depicts the use of both color and normals for erosion detection.

At the fragment level, we use a multi-scale approach. In this case,
we use a structuring element with ten different diameters and take
the color black-top transform to be the sum of the transform taken
across the ten scales. Similarly, the white top-hat transform is the
sum of the white top-hat transform for the normal map over the
ten scales. We chose this approach over a single large scale be-
cause features are less likely to expand beyond their boundaries.
Multi-scale morphological scale spaces work locally, are good at
separating features from uneven backgrounds and do not exhibit
the blurring across features characteristic of Gaussian kernels. Fig-
ure 6 shows an example of fragment level erosion. Although there
is some normal variation and noise over the entire surface, we
combine color, normals and thresholding to ensure we only detect
variations due to erosion (the cracks and pits near the edges).

Figure 5: Erosion Detection. The black top-hat transform is gen-
erated by applying a closing operation to the color image and sub-
tracting the result from the original color image. The white top-hat
transform is generated by applying an opening operation to the nor-
mal map and then subtracting it from the original normal map. The
final erosion map is the intersection of the two top-hat transforms
and thresholding to reduce noise.

Figure 6: Comparing erosion detection on 2D normal maps and
3D geometry. Note: We only show the z component of the normals.
(a) The 2D normal map acquired with a flat-bed scanner has more
detail than the smoother normals in (b) acquired with a 3D scanner.
(c) Areas of erosion, highlighted in grey, are detected on the 2D
normal map, but no erosion is detected on the 3D geometry (d).



Thickness

Type: Per-Fragment and Per-Patch Data: 3D

In some datasets, the thickness of fragments varies considerably
from location to location. Therefore, we use the 3D scan to deter-
mine the fragment’s thickness at every point. We use the average
thickness, per fragment or per patch, as a descriptor. Note that in
this case it is especially critical that we offset each patch away from
the edge of the fragment, since the estimated thickness is likely to
be unreliable near the edges.

Ribbonmatcher Error and Volume Intersection

Type: Per-Match Data: 3D

To compare the performance of our per-fragment and per-patch de-
scriptors to more descriptive per-match features, we look at two
values computed via the brute force “ribbon-matching” approach
of [Brown et al. 2008]. For both values, the optimal alignment of
the two fragments at the patch locations is computed using the rib-
bon matcher with a 12.5mm strip width. The first value (“ribbon
error”) we consider is the mean-squared distance between frag-
ments along this strip, as computed by the ribbon matcher. The
second value (“volume intersection”) measures the amount of inter-
penetration between fragments. A vertical plane is oriented along
the matching edge, and the interpenetration of the two fragments
is sampled on this plane. We compute the average of all squared
lengths that exceed 1mm. The intuition behind this descriptor is
that correctly matching fragments may have some slight interpene-
tration due to sampling error, erosion (which affects the alignment),
and accretions on the fragment edge when it was scanned. However,
correctly matching fragments should not have any substantial inter-
penetration. Considering only interpenetrations greater than 1mm
accounts for “explainable” interpenetration, and squaring the dis-
tances penalizes deep intersections more than shallow ones. Note
also that the volume descriptor considers the entire fragments, not
just selected patches or ribbonmatcher strips.

5 Case Studies of New Features

Several of the features we consider are motivated specifically by
the fresco-matching application, rather than being “generic” fea-
tures applicable to a variety of shape matching problems. Here we
consider a few of these, and present anecdotal evidence for their
performance.

Normal-based Features: While we have found that color cues
are meaningful for some datasets and perform no better than chance
on others, we have uniformly observed that normal-based features
provide reasonable performance. For example, Figure 7 shows the
best match found between a pair of fragments from the Kerkrade
fresco using only color cues (center) and using normal-based fea-
tures (right); only the latter is correct. We hypothesize that even
in datasets that exhibit considerable color variation throughout the
fresco, the variation within a single fragment is usually insufficient
to yield the correct alignment.

Thus, we suggest that normal-based features combine the computa-
tional efficiency and ease of use of conventional 2D features while
improving upon classification performance in many cases.

Erosion: We analyzed our erosion detection features on a num-
ber of fragments exhibiting strong cracking, strong color variation
without erosion, and mild erosion (Figure 8). In each case we show
the results of running our top-hat operators on the colors and nor-
mals, as well as their intersection. We found that the intersection of
top-hat transforms applied to both the colors and normals gave good
sensitivity to detection of cracking and erosion. At top, the normals
detected all of the cracks, while the color served to limit sensitivity
to additional normal variation. At center, the lack of variation in

Figure 7: Left: ground-truth match between two fragments of the
Kerkrade fresco. Center: best match, only considering this pair of
fragments (at all orientations) and color-based features. Right:
best match, considering normal-based features—notice that the
correct match was found.

Figure 8: When computing erosion, we intersect the top-hat trans-
forms of the color and normal maps to avoid capturing sharp vari-
ations in color due to dirt or stains, and high frequency noise in the
normal maps. (a - c) Black top-hat transforms of color maps for
three fragments (color and cracking, color and smooth, white and
smooth). (d - f) The white top-hat transforms of the corresponding
normal maps. (g - i) Intersection of black and white top-hat trans-
forms. Top: Erosion is detected when there are cracks and pits
in both the color and normal maps as shown by the yellow pixels
in (g). Middle: No erosion is detected on the smooth fragment
with color. There are no green or yellow pixels in (h) but several
red pixels representing color detected by the black top-hat operator.
Bottom: Only a few pits are detected on the smooth white fragment.

Figure 9: Normal maps illustrating the wide variation in brush
strokes on the Kerkrade fresco, including strokes left by a paint-
brush (left) and strokes left when smoothing out the underlying
plaster (center and right). The direction of these strokes (the an-
gle between their dominant orientation and the fragment contour)
is a strong matching cue. The amplitude and frequency also help
distinguish between these three types of strokes.



Table 1: Statistics of correspondence values (typically absolute values of differences of feature descriptor values) for random matches and
non-matches in the “Synthetic,” “Akrotiri,” and “Kerkrade” datasets.

Synthetic Akrotiri Kerkrade
Feature

(min / mean / max / stdev) (min / mean / max / stdev) (min / mean / max / stdev)

ColorAvgR 0.000 / 0.054 / 0.978 / 0.157 0.000 / 0.170 / 0.613 / 0.131 0.000 / 0.135 / 0.505 / 0.097
ColorAvgG 0.000 / 0.071 / 0.977 / 0.186 0.000 / 0.158 / 0.581 / 0.126 0.000 / 0.077 / 0.277 / 0.058
ColorAvgB 0.000 / 0.092 / 0.968 / 0.199 0.000 / 0.122 / 0.589 / 0.103 0.000 / 0.040 / 0.174 / 0.034
ColorVariance 0.000 / 0.040 / 0.628 / 0.083 0.000 / 0.026 / 0.167 / 0.022 0.000 / 0.008 / 0.085 / 0.009C

ol
or

ColorSaturation 0.000 / 0.074 / 0.883 / 0.160 0.000 / 0.131 / 0.589 / 0.096 0.000 / 0.084 / 0.410 / 0.078

CurvatureContour 0.000 / 0.032 / 0.382 / 0.033 0.000 / 0.098 / 0.572 / 0.085 0 000 / 0.089 / 0.513 / 0.076

C
ur
v

CurvatureArea 0.000 / 0.069 / 0.414 / 0.059 0.000 / 0.069 / 0.410 / 0.058 0.000 / 0.074 / 0.445 / 0.061

ColorNormalVariance 0.000 / 0.051 / 0.896 / 0.098 0.000 / 0.036 / 0.227 / 0.029 0.000 / 0.036 / 0.242 / 0.035
NormalMeanZ 0.000 / 0.038 / 1.155 / 0.067 0.000 / 0.143 / 0.634 / 0.118 0.000 / 0.074 / 0.383 / 0.064
NormalVariance 0.000 / 0.056 / 0.483 / 0.073 0.000 / 0.064 / 0.712 / 0.064 0.000 / 0.059 / 0.301 / 0.049
NormalDiscont8050Ratio 0.000 / 0.704 / 8.000 / 1.198 0.000 / 0.406 / 2.000/ 0.361 0.000 / 0.590 / 4.000 / 0.606
NormalDiscontThresholded 0.000 / 0.053 / 0.833 / 0.109 0.000 / 0.201 / 0.893 / 0.149 0.000 / 1.086 / 0.584 / 0.098
NormalDiscontThirdMoment 0.001 / 1.665 / 9.649 / 1.504 0.001 / 0.389 / 5.085 / 0.575 0.000 / 1.171 / 3.926 / 1.029
NormalDiscontFourthMoment 0.004 / 15.647 / 147.952 / 18.466 0.000 / 1.746 / 50.572 / 4.222 0.001 / 3.546 / 61.146 / 4.760
NormalDominantFrequency 0.000 / 0.111/ 1.394/ 0.227 0.000 / 0.711 / 8.314 / 0.914 0.000 / 0.301 / 2.798 / 0.358
NormalDominantOrientation 0.000 / 0.727 / 2.931 / 0.549 0.002 / 0.826 / 3.028 / 0.649 0.002 / 0.767 / 3.033 / 0.593
NormalDominantAmplitude 0.000 / 0.007 / 0.096 / 0.001 0.000 / 0.015 / 0.083 / 0.012 0.000 / 0.012 / 0.007 / 0.010
ColorNormalErosionDensity 0.000 / 0.01 / 0.211 / 0.023 0.000 / 0.007 / 0.089 / 0.007 0.000 / 0.004 / 0.087 / 0.010

N
or
m
al

ColorNormalErosionShape 0.000 / 0.006 / 0.211 / 0.016 0.000 / 0.036 / 0.24 / 0.037 0.000 / 0.002 / 0.065 / 0.005

Thickness 0.001 / 1.392 / 8.432 / 1.399 0.002 / 2.953 / 12.821 / 2.221 0.000 / 4.700 / 22.199 / 4.022
RibbonError 0.003 / 8.412 / 282.209 / 16.806 0.000 / 11.701 / 136.566 / 14.536 0.082 / 15.742 / 112.204 / 16.7653D

RibbonVolIntersection 0.000 / 253.265 /5681.626 /648.324 0.000 / 293.093 / 14545.190 / 804.263 0.000 / 151.188 / 3183.708 / 308.539

Figure 10: Comparing the distribution of feature correspondences across multiple datasets. Histogram plots show the percentage of cor-
respondences with the specified feature correspondence ranges for the Synthetic, Akrotiri and Kerkrade frescos. 2,274 correspondences
consisting of both matches and non-matches were taken from each dataset. (a) There is more variation in correspondences for ColorSaturation
for Akrotiri and Kerkrade than the Synthetic dataset which is primarily composed of white fragments. (b) The RibbonErr correspondences are
similar across all three datasets. (c) The shape of the curves show that ColorNormalVariance correspondences are more similar for Akrotiri
and Kerkrade than the Synthetic dataset. The variation of correspondence ranges across the different datasets suggests that re-weighting the
contribution of individual features based on observed statistics of the dataset would adaptively improve match retrieval for a specific dataset.

the normals successfully suppressed the detector in areas of color
detail. At bottom, this white-colored fragment had only a few small
pits, which were successfully detected in both colors and normals.

Brush Strokes: One of our frescoes—Kerkrade—exhibited
strong variation in the types of brush strokes that were present. We
observed a number of phenomena, including small strokes left by
the artist’s brush (Figure 9, left) and broader, deeper strokes left in
the underlying plaster when smoothing it out (center and right). We
also observed situations in which Brush strokes at different orienta-
tions were simultaneously visible. Though our current method does
not detect these, returning only the strongest brush stroke direction
present in a fragment or patch, we believe that it would be possible
to extend the descriptor to handle these cases. In cases in which
brush strokes are present, we informally observe the orientation of
these strokes to be one of the strongest matching cues available.

6 Summary of Features

In this section, we analyze the distributions of feature values across
the three fresco databases introduced in Section 3.3. We observe
that the importance of different features for discriminating matches

from non-matches is different for each database, motivating the
classifier-based evaluation methodology presented in Section 7.

Table 1 shows statistics for the feature correspondences computed
on each fresco. In this analysis, we use 2,274 pairwise feature
correspondences from each dataset, including both ground-truth
matches and randomly sampled non-matches. All patches have
a 10mm diameter and each patch center is offset 8mm from the
boundary contour (except for curvature descriptors, which are sam-
pled along the boundary contour). The values shown are the min-
imum, mean, maximum, and standard deviation of “correspon-
dence” values for each feature. For most features, this is just the
absolute value of the difference between the feature values com-
puted on both fragments: these are expected to be near zero for
correct matches. For a few features, however, the correspondence
value is the absolute value of the sum for the two fragments. This
is necessary for features such as curvature, which are expected to
have opposite signs on corresponding fragments.

As shown in Figure 10, the distribution feature correspondences is
different for each fresco. For example, almost all ColorSaturation
correspondences (a) for the Synthetic fresco are near zero while



Figure 11: Feature discriminability. Feature correspondences for
equal numbers of matches and non-matches for the Synthetic (2,274
samples) and Akrotiri (206 samples) datasets. (a) - (b) ColorSatu-
ration is more descriminating on the Akrotiri dataset. The number
of matches with correspondences near zero are greater than that
of non-matches. Conversely, there is little distinction between the
two curves for the Synthetic dataset. (c) - (d) RibbonErr correspon-
dences greater than 50 belong to non-matches for both datasets. (e)
- (f) ColorNormalVariance values greater than 0.05 on Akrotiri are
more likely to be non-matches. Synthetic values greater than 0.10
are more likely to be non-matches (with less obvious distinction).

only 8% of the samples are clustered near zero for Akrotiri. This is
not surprising, as most Synthetic fragments are white. The distribu-
tion of the RibbonError feature (b) is similar for each dataset while
the range of the ColorNormalVariance feature (c) is most similar
for Akrotiri and Kerkrade but different for the Synthetic fresco.

We also observe that different features are more discriminating on
different datasets. Figure 11 compares histogram plots of selected
features for ground-truth matches (blue) vs. non-matches (red) for
the Synthetic and Akrotiri datasets. There are equal numbers of
matches in each example, with 2,274 total samples for the Synthetic
dataset and 206 total samples for the Akrotiri dataset. The match
and non-match curves for ColorSaturation are almost identical on
the Synthetic dataset, suggesting there is little information for dis-
tinguishing between a match and a non-match using this feature.
Conversely, the number of matches whose correspondence lies near
zero is significantly greater than non-matches for Akrotiri. This is
expected, as this dataset contains considerable pigmentation and
hence color is a good matching cue. We also observe that there is a
clear threshold above which correspondence values are more likely
to apply to non-matches than matches. In many cases, 100% of
correspondences above the threshold are non-matches.

Our analysis suggests that color and 3D features work best for
the Akrotiri and Kerkrade databases and that, in general, normal-
based features will work well on all databases. Some normal fea-
tures are significantly stronger than others, however, depending on
the surface features of the database. For example, we observed
that dominant-orientation features are especially important for the

Kerkrade dataset, with color-based features performing no better
than chance. Curvature features are the least reliable.

We also compared classification results for each feature individu-
ally and in combination with other features. Individual features do
not perform as well as combinations of features. We found that
Patch level features are more robust than fragment level features.
One exception to this rule is erosion, which was more effective
when computed over the entire fragment. We anticipate that this
feature is good at separating smooth fragments from eroded ones at
the fragment level, but is too noisy at the patch level. In Section 7,
we discuss our classification approach, results from combining fea-
tures, and comparisons of patch level vs. fragment level features.

7 Classification Results

Classifiers and Evaluation Methodology: In order to evaluate
the performance of our features for matching, we work with man-
ually labeled sets of matching fragments, and randomly sampled
non-matches. Except where stated otherwise, we use 10-fold cross-
validation, with manually separated training and test sets. In each of
these sets, we ensure that each pair of fragments, whether matching
or not, is placed entirely within either the training or test set. This
is done because a single matching pair of fragments may result in
multiple matching patches, so we wish to ensure that the classifica-
tion algorithms do not gain advantage from training and testing on
patches from the same pair of fragments. Using various subsets of
the color, normal, and geometric features described above, we train
classifiers to distinguish between matches and non-matches.

We explored four classification algorithms, as implemented by the
“Weka” open-source data mining package.1 The algorithms are:

• J48 decision trees implement the C4.5 algorithm of Quin-
lan [1993]. This algorithm hierarchically subdivides the training
set, at each node partitioning using the feature that results in the
greatest difference in entropy among the subsets.

• Random forests train decision trees on multiple subsets of fea-
tures, combining the results into a single probabilistic classifier.

• Support vector machines compute a high-dimensional sepa-
rating plane between the two categories.

• Logistic regression fits the data with a generalized linear model
consisting of the logistic function p = 1/(1+ e−z) applied to a
linear combination of the input feature values.

To determine which classifier would generalize well to all of our
datasets, we evaluated robustness to overfitting, computational ef-
ficiency, and the availability of a real-valued probability instead of
merely a binary yes/no classification. The latter is important for
our application, since it allows us to create a rank-ordered list of
hypothesized matches, which is then presented to a human for veri-
fication. Since it will typically be impractical for a person to check
all predicted matches, the availability of a ranking is crucial.

Table 2 shows the performance of each classifier using all of
our per-fragment, per-patch and per-match features for 2,274
groundtruth samples (with equal numbers of matches and non-
matches). The J48 decision trees had good matching performance
but were more prone to over-fitting the data. In addition, they pro-
vide only a binary decision, not a probability. Random forests were
less prone to over-fitting and provided probabilities, but the prob-
ability values (from combining multiple trees) were still strongly
clustered. Support Vector Machines worked well and gave mean-
ingful probabilities, but exhibited time, space and algorithmic com-
plexities that are impractical for large datasets. They were also
sensitive to parameter selection, which was often difficult due to the

1 http://www.cs.waikato.ac.nz/ml/weka/



Table 2: Comparison of machine learning algorithmns: We eval-
uate the performance of each algorithm using manual cross vali-
dation on 2,274 groundtruth samples containing an equal number
of matches and non-matches. In this example, we combine all per-
patch, per-fragment and per-match features.

Classifier
Ground-truth Matches Ground-truth Nonmatches

Correct (TP) Incorrect (FN) Correct (TN) Incorrect (FP)

J48 66% 34% 84% 16%
RandomForest 79% 21% 71% 29%
SVM 67% 33% 78% 22%

LogisticRegression 84% 16% 49% 51%

Table 3: Classification performance on synthetic fresco, on a test
set of 220 samples using logistic regression. There are 110 matches
(one pairwise match per matching fragment pair) and 110 non-
matches (also unique and randomly sampled. We apply the best
model from our manual cross validation training session.

Features
Ground-truth Matches Ground-truth Nonmatches

Correct (TP) Incorrect (FN) Correct (TN) Incorrect (FP)

AllColor 79% 21% 31% 69%
AllCurvature 54% 46% 62% 38%
AllNormal 80% 20% 48% 52%
Thickness 80% 20% 37% 63%
RibbonError 86% 14% 68% 32%

RibbonVolIntersect 94% 6% 35% 65%
AllCombined 90% 10% 78% 22%

wide range of meaningful values for each feature. Logistic regres-
sion had lower computation costs, proved more resistant to over-
fitting and required no manual parameter adjustments. It produced
meaningful rankings for precision and recall and experimental anal-
ysis. Although logistic regression has a high false-positive rate, its
collective advantages far outweigh other approaches. This method
is used for the remaining results in this section.

Performance on Synthetic Fresco: We evaluate the performance
of classifiers trained on different categories of features, on a set of
ground-truth matches and non-matches from the Synthetic fresco.
Because this is the dataset with the greatest number of known
matches, we expect to learn the most meaningful results about fea-
ture performance by observing classification results on this fresco.

This test was conducted on 110 known matches and 110 known
non-matches from this fresco. For maximum fairness, we only
include one pair of matching or non-matching patches for each
fragment pair. Table 3 shows the number of correctly and incor-
rectly classified instances among the matches (true positives and
false negatives) and among the non-matches (true negatives and
false positives). The table rows represent classifiers trained on:

• All “color” features listed in Table 1. Color and curvature are
considered by many traditional 2D-only matching algorithms.

• All “curvature” features listed in Table 1, evaluated at all scales.

• All “normal” features listed in Table 1. These are the new per-
fragment and per-patch features we propose.

• The fragment thickness.

• The RibbonError and RibbonVolIntersection features, which
represent two outputs computed by the ribbon-matching algo-
rithm of [Brown et al. 2008] on the 3D models.

• A combination of all features listed in Table 1.

The table demonstrates that each type of feature has its strengths
and weaknesses when it comes to both finding matches and re-
jecting non-matches. Curvature and color features, considering

Figure 12: Left: Precision-recall for a classification experiment
on the Synthetic fresco using the classes of features shown in Ta-
ble 3. Right: A re-weighting experiment. 203 locations of potential
matches, predicted by the ribbon matcher, are ranked by a trained
classifier. Averages over 10-fold cross validation are presented.

both true-positive and true-negative numbers, are barely perform-
ing above chance. The normal-based features perform better on
non-matches, confirming our hypothesis that such features, while
remaining easy to acquire, easy to compute, and easy to incorporate
into a fast pruning stage based on per-fragment and per-patch infor-
mation, incorporate substantially more information about matching
fragments than does color.

Turning to 3D information, thickness performs moderately well, but
not as well as normal-based features. The two ribbon-matcher fea-
tures have substantially better performance, but note that these also
have substantially higher computational cost: they are per-match
features, not per-fragment or per-patch.

Finally, the combination of all features has the best overall per-
formance, demonstrating that the classifier is successfully taking
advantage of the best performance of each.

Precision-recall: Because the logistic regression classifier out-
puts not only a prediction but also a probability, we are able to
evaluate our results on a “ranking” task that provides more insight
than is available with simple confusion matrices. We present our
results using precision-recall curves, in which points represent pre-
dicted matches in probability-ranked order, with the x coordinate
(recall) representing the fraction of total matches found so far while
the y axis (precision) indicates the fraction of all predictions so far
that have corresponded to true matches. Higher curves therefore
represent better results.

Figure 12, left, shows results on an experiment similar to the one in
Table 3, using the same sets of features. At right, we show a differ-
ent way of using classifiers, namely a re-weighting experiment in
which 203 locations of matches predicted by the existing “ribbon
matcher” are ranked according to a classifier trained on different
subsets of features. Average results for 10-fold cross validation are
presented. In both cases, the results show that combining features
leads to better precision than most individual features, especially at
higher recall.

Per-Fragment vs. Per-Patch Features: To further examine the
potential performance of the pipeline in Figure 2, we investigated
the performance of per-fragment and per-patch features. Figure 13
left shows precision-recall curves where dashed lines include only
per-fragment features, while solid lines include both per-fragment
and per-patch features. For color-based features, both sets perform
relatively poorly, but for normal and thickness features, there is
more information available from per-patch features. In these cases,
however, per-fragment features alone are still performing some de-
gree of classification, suggesting that the pipeline of Figure 2 may,
with appropriate thresholds, provide efficiency and accuracy.

Generalization across Datasets: To examine the extent to which
classifier performance generalizes across different datasets, we
trained a classifier on the Synthetic fresco, using the three features



Figure 13: Left: Comparison of per-fragment features (dashed
lines) with a combination of per-fragment and per-patch features
(solid lines). Adding per-patch features always improves classifi-
cation performance, but increases computation time. Right: Eval-
uating classifiers on multiple datasets. A model was trained on
the Synthetic dataset using a combination of features: ColorSat-
uration, RibbonError and ColorNormalVariance (features used in
Figure 11). We show results of the trained classifier on the original
(Synthetic) dataset, and the same classifier on the Akrotiri dataset.

of Figure 11. We then compared the performance of the classi-
fier on the original Synthetic fresco, as well as the Akrotiri fresco
(Figure 13 right). We observe that the performance is reasonable,
with the classifier sometimes performing slightly better and some-
times slightly worse. In general, we expect better performance
with custom-trained classifiers for each dataset, but these prelim-
inary results suggest that adapting classifiers from one dataset to
another may still lead to reasonable results. In particular, the re-
sults are usually sufficient to perform a “bootstrapping”: finding
enough ground-truth matches to enable a new, custom classifier to
be trained. In the future, we expect to use the results of the analysis
of variance of each feature across each dataset to be able to adapt
classifiers even more directly, by re-weighting the contribution of
each feature to the classification without a full re-training step.

8 Discussion and Conclusion

Manual fragment assembly rarely occurs based on a single cue.
Even where there is an obvious and essential cue, such as the edge
geometry of fresco fragments, a good assembler relies on judi-
ciously combining every available cue. Working in the context
of fresco fragments, we have introduced several new feature de-
scriptors based on normals and color that encapsulate cues such as
fragment erosion and surface impressions. We have also shown how
to use machine-learning techniques to combine descriptors within
a multi-cue framework, including using our new per-fragment and
per-patch descriptors to complement existing per-match features.

There is some danger to relying on surface-based features. While
matching fragments often erode in similar ways, that is not always
the case. When only one fragment has eroded or discolored, we
may not identify the match. This is of course inherent in relying on
any kind of cue: edge- and contour-based matchers will fail if too
much of the side (as opposed to the front) has eroded or broken off,
whereas matching on surface properties might still succeed. We
believe the best bet is to support many different cues so we can
identify as many matches as possible.

Although we have presented our work in the context of fresco frag-
ments, we believe the ideas translate to many other matching prob-
lems such as distinguishing the brush strokes of different artists on
oil paintings, classifying chisel marks on sculptures, or matching
textured objects to their impressions for forensic identification. Dif-
ferent types of objects will naturally require different features, but
we expect the normal-based descriptors we have presented will be
valuable for many types of material with an exterior surface con-
taining relief or erosion. Our features are simple functions that can

be computed on any dataset of normal maps.

For this reason, we anticipate that classifiers trained on one dataset
will still perform well on another, but that improved performance
could be achieved with an online learning approach: a pre-trained
classifier is used to generate an initial classification, with re-training
occurring as instances are confirmed to be either correctly or incor-
rectly classified. We leave this approach as future work, and present
classification performance results for the synthetic dataset. We be-
lieve that our framework and empirical analysis will be of interest
to researchers in the areas of cultural heritage preservation, data
acquisition, shape matching and image analysis and will inspire the
increased use of machine learning methods for generalized graphics
applications in the broader graphics community.
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