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Abstract — In this work a novel radar simulation concept
is introduced that allows to simulate realistic radar data for
Range, Doppler, and for arbitrary antenna positions in an efficient
way. Further, it makes it possible to automatically annotate the
simulated radar signal by allowing to decompose it into different
parts. This approach makes not only almost perfect annotations
possible, but also allows the annotation for exotic effects, such
as multi-path effects or to label signal parts originating from
different parts of an object. This is possible by adapting the
computation process of a monte carlo shooting and bouncing rays
(SBR) simulator. By considering the hits of each simulated ray,
various meta data can be stored such as hit position, mesh pointer,
object IDs, and many more. This collected meta data can then
be utilized to predict the change of path lengths introduced by
object motion to obtain Doppler information or to apply specific
ray filter rules to obtain radar signals that only fulfil specific
conditions, such as multiple bounces or containing specific object
IDs. Using this approach perfect and otherwise almost impossible
annotations schemes can be realized.

Keywords — Automotive Radar, Radar Simulation, Data
Annotation

I. INTRODUCTION

Radar sensors have become one of the most important type
of sensors when it comes to automated or autonomous driving
applications. Compared to lidar sensors, they are cheap, robust
and can also operate under various weather conditions such
as rain and fog [1]. Furthermore, radar sensors can directly
measure the radial speed of objects by utilizing the Doppler
effect. Since radar sensors are especially unobtrusive and
compact they can even be employed in domains such as human
activity recognition [2], [3] or for medical tasks [4].

In all of these domains, detection and classification for
various cases plays a major role. For example, entities in
automotive scenarios such as pedestrian, cyclist, and cars have
to be detected and classified reliably [5]–[7]. For activity
recognition, various tasks such as hand gesture recognition [8]
or breathing and fall detection exist [9]–[11]. Also the
detection of ghost targets caused by multi-path reflections is
important in all of these applications, since it can lead to
false detections and classifications. Various machine learning
approaches exists to alleviate this effect, see [12]–[14].
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Fig. 1. A launched ray collects meta data in the simulation process, which
can be used to generate Doppler simulations and efficiently annotate radar
images in the post processing step. In this illustration, the meta data consists
of a a mesh id, a triangle index of the mesh, and the ray hit position.

In order to train potential classifiers, commonly the data
has to be annotated beforehand. This can either happen
manually or self-supervised using reference sensors, such as
lidar or camera sensors [15], [16]. However, conducting real
measurements and annotating data manually is expensive,
time consuming, and often error-prone. Compared to natural
images, radar data is very unfamiliar for the the human eye
and expert knowledge is required for manual annotation. Even
with the help of reference sensors, the problems of generating
enough corner cases remains. Further, neither lidar nor camera
sensors share the same physical and data processing principles
making self-supervised learning not completely reliable.

To overcome this problem, a digital twin of the real
world and the sensor itself can be created [17]. This digital
reality can serve as ground truth and allows for an improved
annotation. Even the car manufacturer Tesla, Inc. created a
digital resemblance of San Francisco to train its autonomous
driving algorithms1, which underlines the importance of this
topic.

For radar data, several simulation approaches exist, starting
from point-scattering models [18], generative machine learning
approaches [19] to very accurate ray tracing based physical
models [20]–[23]. Especially physical models can obtain very

1https://www.teslaacessories.com/blogs/news/virtual-san-francisco-tesla
-tests-autopilot-with-simulation-from-large-game-engine-unreal
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Fig. 2. The contribution of this work this work is shown in the upper part
of the image (a). Compared to convential approaches (b) path lengths and ray
data is only simulated once and are adjusted afterwards for different chirps
and antenna positions. Below each box the respective section is referenced,
which explains the processing step in more detail.

versatile and accurate simulations and are successfully used in
classification tasks [24]. However, even in simulations it is hard
to determine which part of the signal belongs to each specific
object. This is because the reflectance at an object also causes
sidelobes or creates multi-path targets beside the correct signal
part. In the examplary case of a walking pedestrian obscured
by a car, a ghost target can be created in the radar signal due
to multi-path effects. For safety considerations it is essential to
detect that this signal actually originates from a human and at
the same time that it is caused by multi-path effects. Another
simpler example is that even in simulations an object may be
occluded by another one and therefore is not visible in the
signal at all. The simulator should therefore be able to detect
this effect in order to not annotate this part in the radar image
wrongly.

In this contribution, a concept is proposed that solves
theses issues by collecting ray meta data during the simulation
process with a radar ray tracing simulator. These meta data
include pointers to the meshes and triangles that the rays hit
on their way from transmitter to receiver. More over, the meta
data can be augmented by even more attributes such as normal
vectors or material information. This process is illustrated in
Fig. 1.

With this meta data, it is possible to efficiently simulate
Doppler characteristics as well as data for large antenna arrays.
It is further possible to automatically generate (almost) perfect
and precise labels for an annotation of the simulated radar
signal.

II. CONCEPT

In this section, the complete simulation workflow is
explained from the radar signal model, to the utilization of ray
meta data up to the efficient simulation for different antenna
positions, as also depicted in Fig. 2.

A. Radar Simulation And Signal Model

The contribution of this paper is based on the simulator we
presented in [23]. It features an implementation of the shooting
and bouncing rays (SBR) approach and uses a probabilistic
material model to account for specular and more diffuse
reflection types. In order to account for realistic multi-path
simulations and to achieve realistic material behavior, a

quite large amount of rays is shot into the simulation
environment. This is computational expensive but tolerable
with modern hardware and standard for visual ray tracing
approaches [25] [26].

Conventionally, each ray with index i sums up its path
length di from the transmit (TX) antenna, to one or more
objects and finally the receiving (RX) antenna. This process is
also illustrated in Fig. 1. The delay τi for each ray is defined
by

τi =
di(j)

c
, (1)

with c is being speed of light. Due to the large amount of rays,
this information is sufficient to compute a good representation
of the beat or intermediate frequency (IF) signal of a frequency
modulated continuous wave (FMCW) radar signal as shown in
the equation below

sIF(t, j) =

N∑
i=0

A(α, β) exp(2πj(µtτi(j) + fcτi(j))). (2)

With A(α, β) modelling the direction-depending antenna
radiation pattern and fc representing the carrier frequency of
the signal. The frequency slope µ is defined by the ratio of the
bandwidth B and the chirp duration Tc, see equation below

µ =
B

Tc
. (3)

A more detailed description of FMCW radar signal processing
can for example be found in [27].

In order to simulate multiple Doppler shifts, so called
chirps, have to be simulated. The time between two chirps
is given by Td and is often close to Tc but not necessarily
equal. Each chirp simulation is indicated by the index j as
used in (1) and (2). If an object is in motion during the
radar measurement, the path length and therefore also τ will
slightly change during each chirp. The time variable t of
a single chirp is commonly named fast time and the time
variable across all chirps with index j is called slow time.
A complete measurement consisting of several chirps is called
chirp sequence.

Ordering the chirp sequence into a two dimensional array
and computing a discrete Fourier transform results in a
Range-Doppler spectrum

SIF(fr, fd) = DFT2d(sIF(t, j)). (4)

Zero padding and windowing is omitted in this short
description. The resulting frequency axes represent the range
frequency fr and the Doppler frequency fd.

B. Ray Meta Data

In this subsection, the extension of the aforementioned
simulation approach is described. The simulator will be
adapted, so that it not only stores a ray’s path length during
the simulation, but also relevant additional information, every
time it hits a triangle.

In general, the type and amount of meta data is arbitrary
and only limited by the computing resources e.g. video



memory. However, in this work the meta data consists of a
list of tuples. Each list entry represents a single ray hit and
each tuple consists of the following elements:
• mesh identfier ak
• triangle index bk
• barycentric triangle coordinates uk and vk

Whereby, a mesh represents an object consisting of multiple
triangles and each triangle consists of three vertices, see Fig. 3.

The index k determines the entry position in the list. Since
the complete scene consists of several meshes, which again
are made up of several triangles, identifiers for both have to
be stored. To obtain the exact hit position after the ray tracing
process, the barycentric coordinates of the hit position of the
triangle have to be stored as well.

It is also possible to store the Cartesian position of the
hit position directly, but by using this approach, it simplifies
the computation of Doppler information, as shown later in
section II-D. Having a unique mesh identifier is also required
to decompose or to automatically label objects in the processed
radar signal, as described in the next section.

C. Radar Signal Decomposition

Having stored all rays including their meta data, it is now
possible to decompose the IF-Signal in the following way:

sIF(t, j) =

h=M∑
h=0

shIF(t, j, τh). (5)

Here, h depicts a ray span or region, that consists of several
rays generating an IF-Signal part shIF. Each ray span may be
generated by arbitrary filter rules, such as:
• Any list entry that includes the mesh ID of a pedestrian
• Has more than one list entry to account for ghost-targets
• Has only one list entry and a specific mesh ID to account

for line of sight detections of a specific object
• . . .

With this technique, radar images including only specific
properties can be created and labels can be automatically
generated by applying very simple binary segmentation
techniques in the processed radar image.

D. Efficient Doppler Simulation

Assuming that the motion across the slow time is small
enough so that each ray would hit the same triangle at each
chirp snapshot, one simulation run is sufficient as long as
the initial ray hit positions are stored. Since the position of
each animated triangle is known at every specific point in
time, the stored hit positions can be updated and new path
lengths can be calculated. This is much more efficient than
running a complete simulation for each snapshot, because ray
tracing requires a lot of expensive collision checks and most
traced rays never hit any object or reach the receiver. This
idea has already been utilized in a similar way by [28] by
considering the objects velocity and computing the Doppler
shift directly. An extension of this was proposed in [29] for
a image-based ray tracing simulation for multiple bounces.

However, this is implemented for an SBR approach and
also supports non-linear motion in general. In fact, it still
performs virtual snapshots, but since the initial rays were
already sampled, the remaining computation time turned out
to be negligible.

This principle can be described as follows: after an initial
ray sampling, the hit positions for each ray are known
as barycentric coordinates u and v. After the time Td,
the positions of each vertex of each animated object are
updated. Since the hit positions should be moved by the same
transformation as the vertices while still being placed on the
triangle, the updated hit position can then the computed by

~pi = (1− u− v) · ~v1 + u · ~v2 + v · ~v3, (6)

where the vectors ~v1, ~v2, and ~v3 representing the three
vertices of the stored triangle and ~pi is the updated hit position
in Cartesian coordinates after Td. Updating each ray for the
selected chirp, new path lengths and a new IF-Signal can be
computed for each chirp.

E. Simulating Different Antenna Positions

By assuming that the objects are sufficiently far away and
the array aperture is small enough, path lengths for other
antennas can be computed directly, as already done in a similar
way in our initial work [23] for the displacement of TX
antennas. There, it was directly implemented in the ray tracing
process, which is less efficient and consumes a significant
higher amount of video memory.

Since the ray hit positions include the first and the last hit
point, the path lengths caused by antenna displacement can
easily be adjusted by the following formula

li = li−|~pfi −~xtx|+ |~p
f
i −~x

′
tx|− |~pli−~xrx|+ |~pli−~x′rx|, (7)

with ~pfi being the first hit position and ~pli being the last
hit position for the simulated TX and RX antenna pair with
positions ~xtx and ~xrx. The positions for the displaced antennas
are denoted as ~x′tx and ~x′rx, respectively.

The idea is that, by subtracting the path lengths from the
TX antenna to the first hit position and the path length from
the RX antenna to the last hit position, only the path lengths
originated through the environment remain. Assuming that the
antenna array is small enough and objects are sufficiently far
away, the reflection behavior of the objects do not change
and the path lengths only has to be adjusted for the antenna
displacement. This process is illustrated in Fig. 4. This
approximation typically holds for automotive applications in
the millimeter wave regime.

III. RESULTS

In the first experiment, we simulated a typical
Range-Doppler map of a walking pedestrian and compared
it with our measurement data. The measured and simulated
range-Doppler image as well as a camera image can be seen
in Fig. 6. Clearly, a micro-Doppler signature of the pedestrian
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Fig. 3. This scheme shows an example of how a mesh with its assigned
triangles moves through time. After Td a new snapshot has to be taken
and the hit position has to be updated. Since hit position experience the
same transformation as the hit triangle, a single simulation run is sufficient
to compute the barycentric coordinates pi(u, v) of the hit position. For all
subsequent chirps, only the vertices have to be updated to compute the correct
hit position.

Fig. 4. The process of computing path lengths of multiple antennas without
re-simulating the scene is depicted. Only the inner path length (red) remains
equal, path lengths directly connected to the antennas can be adjusted
afterwards. This depiction is not to scale, in typical real measurement scenarios
the antennas are much closer and the objects are placed much farer away from
the antennas.

can be seen, as highlighted by red ellipses. There also exist
multi-path effects leading to ghost targets, which can also
quite accurately reproduced by the simulator. However,
there are still some differences between simulation and
measurement, which might originate from an insufficient 3D
description and from a too simple noise simulation.

Since we can manipulate the ray meta data, it is possible
to create a simulated range-Doppler image that only shows the
ghost targets. As already mentioned, this is especially helpful
for artificial intelligence to learn to differentiate between real
and ghost targets for automotive applications. This technique is
demonstrated in Fig. 7 for different types of multi-path effects.
As can be seen in image (c) the Doppler signal from the legs,
assuming having the largest Doppler extent is mainly visible
indirectly through reflections by the floor, while ghost-targets
far away are generated by reflections from the side-walls.

As mentioned before, it is also possible to decompose the
signal into different parts of an object. For example, in hand

Only Arms All but Arms

Fig. 5. In the left image, the complete scene was simulated as in Fig. 6,
but afterwards only rays that hit the arms of the pedestrian were used for the
signal generation. In the right image, it is vice versa everything but the arms
were kept during signal generation.

gesture recognition tasks only the signals reflected by hands
or arms should be used for further processing. In Fig. 5, it
is demonstrated how to separate the signal originated from
the arms from the rest of the body. Here, the same pedestrian
object and 3D environment was used as before. As can be seen,
the Doppler signal that only stems from the arms does overlap
with the signal from the rest of the body, but has significantly
lower extend in Doppler direction, which is otherwise assumed
to be caused by legs.

IV. DISCUSSION AND FUTURE WORK

In this work, a radar simulation approach was presented
that is based on a single TX and RX-antenna pair. This is
sufficient, to generate simulated data for larger arrays and
Doppler information. Consequently, a complete radar cube can
be simulated. For objects which are close to the antennas some
assumptions may not hold since the reflection behavior of the
surfaces is angle-dependent. In future work, also the normal
vector of these surfaces shall be stored in the ray meta data,
so that the received power for each antenna may be adjusted
accordingly. Further, it was shown how the meta data of the
simulated rays can be used to decompose the signal according
to predefined filter rules. With this technique, simulation
data can be automatically labeled in a way that would be
mostly impossible by common simulation approaches and also
extremely challenging for real measurement data.

Future work might improve the simulation process by
creating more diverse 3D worlds and compare the simulation
with more complex measurement environments. It should also
be further evaluated to which extent simulation data can help
to train machine learning algorithms.
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Fig. 6. The real measurement from a walking pedestrian is shown in the upper part of the figure (a) with its simulated counterpart in the lower part of the
figure (b). As can be seen, both range-Doppler maps show the same geometrical behavior and two ghost targets originating from multi-path effects are visible.
Since the radar signal hits the walls in the simulation environment in a sharp angle, the signal is reflected away from the RX antennas making them invisible
in the simulated radar image. The walls in the real measurement are consisting of metal poles and bars, which can directly reflect the signal and are therefore
visible. Since we focus mainly on multi-path effects, we did not take the effort to create such a detailed simulation environment.

a) Direct-Path b) Multi-Path Side-Walls c) Multi-Path Floor

Fig. 7. Ray meta data was filtered in three different ways. In the left image (a) only direct rays without multiple bounces were considered during the signal
generation. In the center image (b) rays with at least one bounce hitting the side-walls were used and in the right image (b) multi-path effects including the
floor were considered.
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